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HIPERWIND 1 EXECUTIVE SUMMARY

1 Executive Summary
To achieve a better understanding of the uncertainty sources and their management, one
of the challenges, that HIPERWIND project addresses, is to improve the representation of
environmental conditions and flow variability in the area of offshore wind parks. This is
performed by improving the overall performance (accuracy and spatial resolution) of met-
ocean models with different levels of fidelity, and by improving further the representation
of key environmental physical processes that strongly affect the design and operation of
offshore wind turbines/farms such as wind turbulence, surface gravity waves, wind-wave-
turbulence interactions, and joint probability distributions of wind and waves.

The first three tasks in WP2 aim to develop a multiscale and observation-informed model
chain to improve understanding key physical processes that are relevant for the offshore wind
energy industry (see Fig. 2.1). We use a fully coupled ocean-atmosphere-wave-sediment
transport (COAWST) modelling system and further develop a one-way coupled system
(offline wind-wave nesting system) to identify and quantify the complex air-sea interactions,
particularly during transient atmospheric and sea-state episodes. In this report (in accord
with Tasks 2.1-2.3), the developed multiscale modelling framework contains the following
components:

• WRF: The Weather Research and Forecasting model that downscales the synoptic-
scale from a global reanalysis, simulates realistically mesoscale features and variations
of the atmospheric flow fields and provides also the lateral forcing and nesting bound-
ary information for other high-fidelity models.

• SWAN: A wave spectral model that focuses on understanding the wave dynamics,
wave evolution, wave-wave, and wind-wave-turbulence interactions.

• The Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling sys-
tem: In this coupled system, we only use the atmosphere model (WRF) and the wave
spectral model SWAN are fully coupled.

• An offline, one-way wave-wind coupled system: The wave bulk information in this
model is provided to the WRF model as offline input.

• WRF-LES: A high-fidelity Large Eddy Simulation (LES) coupled online within the
WRF model to enable the model chain for resolving large turbulent eddies and pa-
rameterizing the smaller eddies.

• PALM: The simulation tool PArallelised Large-eddy simulation Model (PALM) that
is run and is coupled offline with the WRF model. PALM provides even higher
resolutions compared to the WRF-LES and the wakes from individual wind turbines
can be resolved. PALM can also be applied for simulations of both atmospheric and
oceanic boundary layers.

• WBLM: A Wave boundary Layer Model (WBLM) is used within the SWAN spectral
wave model to address better the complex interactions between the wind and waves
(Rogers et al., 2012; Zieger et al., 2015; Hara and Belcher, 2004).

• WRFDA: The WRF Data Assimilation (WRFDA) tools are used to provide more
accurate and realistic model predictions, based on the integration of available obser-
vational data into the modelling system, particularly during the transient atmospheric
events that the performance of models may significantly decline.
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HIPERWIND 2 INTRODUCTION

Figure 2.1: Multiscale framwork consisting of model components, input data, and outputs.

Based on our suggested multiscale model chain, we can:
• Assess the added value of simulations with the multiscale framework.
• Improve the understanding of the effects of (thermally- and mechanically-driven) flows

on wake evolution and the turbine load behaviour over a wide range of atmospheric
forcing and stability conditions.

2 Introduction

2.1 Motivations
In recent years, the rapid growth of the Earth’s population has resulted in a huge increase
in energy demand worldwide. The fact that fossil fuels are limited in nature and can
cause catastrophic global climate change (i.e. through greenhouse gas emissions) motivated
continuous/fast developments toward renewable energy resources such as wind energy. The
wind over land is however an intermittent and non-persistent energy resource that makes it
difficult to effectively accommodate such growing electricity demand. The need for access
to higher and more consistent wind energy resources has dramatically exciting interests
in offshore wind energy towards deep oceans where very large wind turbines will operate
under very harsh environmental conditions for the years to come. While 16% of Europe’s
electricity demand is currently supplied by wind energy (mainly onshore), several emerging
offshore wind projects are establishing the offshore wind industry as a key player in the global
energy market (Walsh, 2020). In this regard, the global offshore wind market experienced
about 30% growth between 2010 and 2018. Europe increased the wind power capacity by
14, 7 GW with a plan to install 105 GW for the next five years. Furthermore, the global
installed capacity has approached to 35 GW in 2020 aiming to reach 300 GW of offshore
wind installations by 2050 (IEA-report, 2021).

Several engineering and scientific studies are focusing on improving the overall efficiency
of wind energy converters to meet the aforementioned growing electricity demand (Trust,
2015; Musial, 2020). Because the wind is the driving force of wind power plants, it is
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crucial to precisely evaluate the wind energy potential and understand its local and non-
local conditions as the first steps in the reliable development of wind park projects and
wind turbine technology (Archer et al., 2017). For example, a better understanding of
large-scale weather systems (that control the wind speed and direction on the farm scale),
inflow conditions to each wind turbine, local wind shear and veer, as well as turbulence are
important for estimating the dynamic loading on different components of wind turbines and
for enhancing the overall performance of power generation system (Hahmann et al., 2015;
Imberger et al., 2021; Pettas et al., 2021).

Wind energy analyses rely generally on observational data within or in the close vicinity
of offshore wind energy sites. Offshore meteorological masts are equipped with various
meteorological and oceanic sensors, and oceanic surface buoys are designed to record wind
and waves in the lower part of the atmosphere (Peña et al., 2008). These in-situ measuring
techniques, however, suffer from limited spatial and temporal coverage that can be some-
what alleviated by the use of Light Detection and Ranging (LiDAR) measuring techniques.
It is noted that the LiDAR devices are not able to measure high-frequency fluctuations
of wind due to insufficient operating temporal resolution, but they can provide a reliable
estimate of turbulence intensity for lower altitudes when there is enough aerosol density.
While some of the above techniques provide coarse resolution information about wind (both
in time and space), the space-born measurements can generate high-resolution wind data,
particularly in space (Sommerfeld et al., 2019).

Measurements are, however, expensive, sparse in space and time, and time-consuming.
To obtain a more comprehensive data coverage than those provided by the in-situ or re-
mote sensing observations, Numerical Weather Prediction (NWP) models combined with
available measurements are used for offshore wind energy applications (Arthur et al., 2020).
The NWP models with a spatial resolution ranging from 1 km to tens of kilometers with
temporal resolutions in the order of minutes to hours can adequately assess the mesoscale
characteristics of the Atmospheric Boundary Layer (ABL). However, the mesoscale NWP
models working at such grid spacing, are unable to resolve the fine-scale turbulences and
other subgrid-scale details of flow variations which are keys to studying the structural me-
chanics of offshore wind turbines (Krüger et al., 2022). This motivates the development
of a multiscale framework in which a wide range of scales and processes, relevant to the
wind park design and control, can be properly captured through a series of coupled models
(Wise et al., 2021).

Just recently, Large-Eddy Simulation (LES) has been used to study non-idealized setups
and processes within the ABL through a grid nesting approach (Lin et al., 2021; Arthur
et al., 2020). This nesting approach enables the modelling framework to simulate details of
flow fields within and around the offshore wind park regions to explicitly capture the complex
interactions between wind turbines and ambient flow as well as the turbine-induced wakes
and their meandering. The nesting technique employs a number of LES model domains with
different horizontal grid spacing where the outermost domain (with the coarsest resolution)
obtains its boundary information from mesoscale NWP models (Hellsten et al., 2021).
The child domains receive the boundary forcing information (one-way or two-way coupled
nesting) from their respective parent domains. In the boundaries of the outermost LES
domain, the nesting variables are horizontally/vertically interpolated from the NWP model
onto the lateral boundaries at each time step. While the grid nesting approach enables the
model chain to capture a wide range of spatiotemporal scales, whether such a multiscale
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system can resolve an almost full range of important physical processes within the marine
atmospheric boundary layer (MABL) is still a question.

Many physical processes in the MABL rely on characteristics of the air-sea interface
and its variability in time and space such as the heat and momentum exchanges. This
adds even more complexity when compared to the terrestrial environment because: (1) the
MABL possesses a shallower depths than the ABL over the land, thus the MABL ‘feels’
more effects from the wavy air-sea interface; (2) the upward momentum flux from the waves
to the MABL depends on the atmospheric stability conditions; and (3) waves contribute
in both aerodynamic and hydrodynamic loading on floating offshore wind turbines. The
coupling between the spectral wave models and atmospheric NWP models may then provide
better characterization of the wind power density through (a near-optimal) determination of
the interfacial stress between the ocean and atmosphere (Porchetta et al., 2021a). Will this
helps to better understand how do the wind and turbulence change and interact with wavy
air-sea interface very close to the sea surface? This is a key question which roots in the
parameterizations of air-sea fluxes of momentum and heat. In general, better models for the
atmosphere-ocean-wave coupled systems can play a key role in reducing the uncertainties
in the modelling of offshore wind energy systems.

Although the multiscale system integrated with ocean wave spectral models is meant
to significantly reduce the model errors, there are still several sources of errors in the
model chain (Haupt et al., 2019). While the accuracy of a modelling system can be
improved by optimizing the physics and dynamics options (using sensitivity analysis of
physics and dynamics options), further model uncertainty reduction can be achieved through
the implementation of Data Assimilation (DA) approaches (Bakhoday-Paskyabi and Flügge,
2021; Sommerfeld et al., 2019) and using good quality initial and boundary information,
and high-resolution terrain data. The DA combines the available high-quality observations
(e.g. surface temperature and wind) into the model simulations to improve the performance
of the multiscale framework in simulating the offshore wind. In the Southern North Sea,
the local atmospheric conditions can be affected by the clusters of offshore wind parks
and the model results might have biases without appropriate corrections to the modelling
framework.

The motivation of this work is to test the effects of using a multiscale (mesoscale-to-
microscale) framework for wind simulations and to address its limitations (see Fig. 2.1).
This includes the study of the qualities of simulations under different atmospheric stabil-
ity and forcing conditions. Furthermore, we present a methodology on how to provide
meteorological boundary forcing information for high-fidelity microscale LES models. Spe-
cial interest is given to investigating the model performance during transient atmospheric
events.

2.2 Objectives
The primary objective of this report is to develop and use sophisticated methodologies for
improving wind prediction for offshore wind applications under varying sea states, atmo-
spheric forcing, and stability conditions. Specifically, we develop a mesoscale-to-microscale
framework that enables downscaling of the regional mesoscale wind to turbine scales tur-
bulent winds. Another objective is to study uncertainties of the coupled multiscale system,
particularly during extreme weather phenomena such as Low-Level Jet (LLJ), Open Cellular
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Convection (OCC), and storms.
The objectives of Tasks 2.1, 2.2, and 2.3 in WP2 are, therefore, briefly listed as follows:
• Identify and improve the representation of important (non-well-resolved) processes in

the mesoscale ABL modelling that influence the accurate prediction of air-wave-sea
interactions.

• Improve multiscale flow modeling of the ABL (from mesoscale to microscale) using
available observational data and modelling tools to efficiently understand and simulate
key physical processes relevant for offshore wind energy design and operation.

• Verification of wind simulation during transient and extreme events to be used in
other WPs.

2.3 Challenges in offshore wind energy
Three important challenges need to be tackled to improve/enhance innovations in both
technology and research mainstreams (read more in Veers and et al. (2019)): (i) urgent
needs for a more comprehensive understanding and identification of atmospheric flow vari-
ability under varying forcing conditions in connection with wave field and ocean variability;
(ii) the technological and engineering advancements in constructing large mechanical ro-
tating (floating) energy devices operating under harsh environmental conditions; and (iii)
development of sophisticated control and optimization systems for the wind turbines/farm
to be operationally connected with the electricity grids (by maintaining a stable and reliable
grid system). Any growth in each of the aforementioned challenges, governed by research
and technological developments, can decrease the Levelized Cost of Energy (LOCE). Fur-
thermore, these challenges are interconnected such that future innovations in the wind
technology direction rely, to a large extent, on the progress in the understanding of com-
plex physical processes. Such highly coupled phenomena and physical processes act on a
broad range of spatial and temporal scales which are relevant directly/indirectly to wind
energy. For example, the impact of changes in the wind field on the cost of wind energy
needs the development of an accurate multiscale model-observation (numerical/statistical)
framework to assess changes from flow distributions toward energy output and LCOE.

2.4 Multi-scale flow modelling
The reanalysis and forecast data are available globally with a resolution of a few dozen
kilometers and frequencies of hours. For example, the ERA5 reanalysis data (Hersbach
et al., 2020) can be downloaded hourly with a horizontal resolution of 0.25◦×0.25◦ degrees
(roughly 28 km grid size with an effective resolution of 8×∆x of about 220 km Bolgiani
et al., 2022). Mesoscale numerical models are useful tools to downscale the synoptic
conditions to a smaller scale of a few kilometers, where many atmospheric processes that are
important in wind energy applications such as low-level jet (LLJ), open cellular convection
(OCC), etc., can be resolved.

On the other hand, the engineering applications have much finer resolutions in both space
and time, for example, a large eddy simulation (Witha et al., 2014) that can simulate the
wake effect explicitly has a typical spatial resolution of meters and time step of milliseconds.
Many engineering application assumes a stationary state of the environmental conditions of
wind and thermal dynamics. These assumptions are useful for the model as they simplify the
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initial conditions—which normally take the form of vertical profiles and boundary conditions,
and the periodic conditions that allow the turbulence within the model a long enough time
to spin up.

Thus, there is a gap in the spatial-temporal scale between the operational atmospheric
numerical models and the engineering applications, typical of the scale between tens of
kilometers to under a kilometer. This scale is often referred to as terra incognita (Wyngaard,
2004). There is a need to close such a gap because the mesoscale model has difficulties
to capture properly the micro-scale features, while the engineer-type models have difficulty
capturing the abrupt changes during the transient events such as the passages of fronts,
LLJ., and OCCs. Knowledge and understanding of local and non-local environmental met-
ocean conditions are needed to bridge the gap between wind engineering applications and
atmospheric science and to improve the performance of offshore/onshore wind parks.

Several atmospheric physical processes have potentially high impacts on offshore wind
energy such as atmospheric heating and cooling, weather events on different spatiotemporal
scales (e.g. cold front and storm passage), and mesoscale systems (e.g. convective cells,
low-level jets, and wind ramps). Existing Numerical Weather Prediction (NWP) models used
for wind energy production and forecast remain, however, inaccurate to capture properly
the unexpected variability of the flow field of various scales, particularly during transient
events. This constraint needs the improvement in the predictive skills of model forecasts
through incorporating the effects of the aforementioned physical processes and developing a
multiscale framework to account for the diverse meteorological processes. Developing such
a multiscale framework would be extremely challenging to capture mesoscale information
down-scaled to fine-scale (turbulent flow phenomena from seconds to hours with spatial
scales expanding between 10−2 m and 103 m).

2.5 Wind-wave interaction
Several mesoscale atmospheric models (e.g. MM5 and WRF) provide wind forcing for the
wave spectral models either through offline or online coupled modelling systems. These
models reproduce the 10-m wind fields in a good agreement with observations that can
be used to estimate the momentum fluxes by solving the wind stress coefficients. While
earlier studies suggested a linear dependence between wind stress and wind speed, such
representation cannot be applied to a wide range of air-sea interactions and sea-state
conditions. Several empirical relations based on best fit with observations were emerged
to estimate the wind stresses by accounting for the effects of wave-induced stresses in the
momentum and energy equations of the turbulent stress (i.e. the Wave Boundary Layer
Model, WBLM, see Fig. 2.2) under very diverse sea-state or extreme wind conditions. For
instance, Fan et al. (2009) applied the WBLM to the Wave-Watch III (WWIII) model. The
results showed an improvement in the prediction of significant wave height, Hs, and an
underestimation in the prediction of the dominant wavelength.

Waves have direct effects on the exchange of humidity, momentum, and energy between
air and sea. When the wind blows over the sea, the momentum flux from the atmosphere
acts to generate the surface waves (Smedman et al., 1999). In turn, the waves increase the
ocean surface’s roughness, which then influences back the atmospheric flow fields. When
the wave grows, its slopes increase to the point where the waves cannot maintain such
slopes and start to break. The wave breaking over a wide range of spatiotemporal scales
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Figure 2.2: Schematic of wave boundary layer model implemented in the SWAN wave
model.

will further complicate the estimations of momentum fluxes near the sea surface (Drennan
et al., 1999).

For the generated waves as a result of the work done by the wind stress on the air-sea
interface, the total stress, τtot, close to the surface can be represented by (Du et al., 2017)

τtot = τν + τt + τw, (2.1)

where τν , τt, and τw are the viscous stress, the turbulence stress, and the wave-induced
stress, respectively. The total stress and wind speed can be empirically formulated by

τtot = ρaCDU2
10 = ρau2

∗a, (2.2)

where ρa is the air density, CD is the drag coefficient, and u∗a denotes the air-side friction
velocity. The viscous stress is expressed as τν = ρaCνU2

10, where Cν denotes the viscous
drag coefficient.

Very close to the sea’s surface, the turbulence vanishes, and therefore τt approaches
zero. In such circumstances, the total wind stress is a combination of the viscous and
wave-induced stresses (Janssen et al., 1989). On the other hand, for the heights above the
ocean surface, τtot is expressed by the sum of the turbulent stress and the wave-induced
stress because the viscous stress is negligible (Wu et al., 2017). The wave-induced stress
is usually calculated in wave models by considering the wave evolution represented by the
spectral energy balance equation. The ocean wave spectrum, E(f, θ), is described in terms
of ω, wavenumber k (or frequency f) and the propagation direction θ. The energy balance
equation is:

7
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∂E

∂t
+ cg . ∇E = Sin + Sds + Snl, (2.3)

where E is the wave energy density, cg denotes the wave group velocity, and the right-hand
side of the equation contains different source terms including Sin, the energy input by
the wind; Sds, the dissipation of wave energy; and Snl, the energy transfer between wave
components due to the non-linear wave-wave interaction. There are several wave models
which use different methods that solve the above equation (such as SWAN, WAM, and
WWIII). Equation (2.3) can be rewritten in terms of the action density (N = E/σ) as

∂N

∂t
+ ∂cxN

∂x
+ ∂cyN

∂y
+ ∂cσN

∂σ
+ ∂cθN

∂θ
= Stot

σ
(2.4)

where σ is the intrinsic circular frequency (in the absence of ocean current, σ = 2πf),
and c = (cx, cy) is the group velocity vector at the geographical location of (x, y). The cσ

and cθ are the propagation speeds in frequency and direction. Stot denotes the combination
of source and sink terms.

Source terms in Janssen et al. (1989)

In Janssen et al. (1989), the wind energy input is expressed by an exponential growth term
β as

Sin(σ, θ) = βE(σ, θ), (2.5)
where

β(σ, θ) = Cβσ
ρa

ρw

(
u∗a

c

)2
cos2 (θ − θw), (2.6)

in which ρw and ρa are the water and air density, respectively. Cβ is the Miles parameter
that can be determined from the non-dimensional critical height λ:

Cβ = J

κ2 λln4λ, λ ≤ 1. (2.7)

The dimensionless critical height is given by

λ = gze

c2 exp (κ/x), x = max [0, (u∗a/c) cos(θ − θw)], (2.8)

where c represents the wave phase speed, and θ and θw denote the wave and the wind
directions, respectively. g denotes the gravitational acceleration, J = 1.2, and κ = 0.41 is
the von Kármán constant. The effective roughness length is calculated as follows:

ze = z0√
1− τw

τtot

, (2.9)

where z0 is the roughness length, τtot is the total surface stress, and the wave-induced stress
τw is defined as:

τw = ρw

∫ ∞

0

∫ π

−π
σ2 Sin(σ, θ) k⃗

k
dθ dσ. (2.10)
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Here k denotes the wavenumber. The wind speed profile in Janssen (1991) model is
assumed to be logarithmic:

U (z) = u∗a

κ
ln
[
z + ze − z0

ze

]
, (2.11)

where z is height. In SWAN, the default white-capping dissipation source term Sds is
formulated by Komen et al. (1984) as:

Sds(σ, θ) = −Cds

[
(1− δ) + δ

k

k̄

](
S̄

S̄P M

)p

σ̄
k

k̄
E(σ, θ), (2.12)

where Etot is the total energy, S̄ = k̄
√

Etot is the mean spectral steepness, and Cds, δ,
and p are tunable parameters (with default values of 0.24 × 10−4, 1, and 4 respectively).
The σ̄ and k̄ are the mean circular frequency and the mean wavenumber. The S̄P M is the
mean spectral steepness for the Pierson–Moskowitz spectrum.

Source term ST6 in SWAN model

The ST6 package in SWAN provides an observation-based representation for Sin and Sds

including positive and negative wind input, wave-turbulence interaction (swell decay), and
two-phase white-capping dissipation (Rogers et al., 2012; Zieger et al., 2015).

The wind energy input source term in this package is written as

Sin(σ, θ) = ρa

ρw

σG
√

BnWE(σ, θ), (2.13)

where Bn = A(σ)E(σ)k3cg denotes the normalized spectral saturation, A indicates the
directional spreading function defined as follows:

A−1(σ) =
∫ 2π

0

E(σ, θ)
Emax(σ)dθ,

where Emax(σ) represents the maximum density over all directions, and G is the sheltering
coefficient to account for the effect of flow separation on wave growth:

G = 2.8− [1 + tanh(10
√

BnW − 11)]. (2.14)

The negative values of the wind input in ST6 is formulated through definition of W (for
the opposed stress) as

W (σ, θ) = W1(σ, θ)− a0W2(σ, θ), (2.15)
where a0 is a tuning parameter, and the positive wind input W1 and the the negative wind
input, W2, are defined as

W1(σ, θ) = max 2
{

0, sws
u∗a

c
cos(θ − θw)

}
, (2.16)

W2(σ, θ) = min 2
{

0, sws
u∗a

c
cos(θ − θw)

}
, (2.17)

where c indicates the wave phase speed and sws is a scaling parameter (with default value
of 32 in SWAN), and the air-side friction velocity is calculated using Eq.(2.2), (Zieger et al.,
2015).
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The estimated wind input is then used to calculate the wave-induced stress. This stress
can be decomposed into the high-frequency, τHF

w , and the low-frequency, τLF
w , terms as

τw = τHF
w + τLF

w . If we calculate the τLF
w stress for all frequencies less than a maximum

frequency of σmax, it results in a larger value compared to the calculation with a non-
directional energy spectrum in Eq. (2.10). For the calculation of non-resolved (tail) part of
the spectrum for frequencies beyond σmax, we use a σ−5 diagnostic up to 10 Hz. In order
to avoid the total wave stress to not exceed the total wind stress, a wavenumber frequency-
dependent correction factor, L(k), is applied to the wind input (i.e. Sin ← LSin) as
L(k) = min[1, exp(δ[1 − 28u∗a/c])], where δ is a parameter that controls the strength
of the wavenumber reduction with strong impact on high frequencies and is calculated
iteratively (see also (Bakhoday-Paskyabi et al., 2012; Tsagareli et al., 2010)).

The dissipation source term in ST6 is estimated by the sum of two components of T1
(breaking related to instabilities in the wave) and T2 (dissipation of shorter waves by longer
breaking waves) (Rogers et al., 2012; Zieger et al., 2015):

Sds(σ, θ) = [T1(σ) + T2(σ)]E(σ, θ), (2.18)

where

T1(σ) = a1A(σ) σ

2π

[
E(σ)− ET (σ)

ET (σ)

]
, (2.19)

T2(σ) = a2

∫ σ2

σ1

A(σ′)
2π

[
E(σ′)− ET (σ′)

ET (σ′)

]
dσ′, (2.20)

where the threshold spectral density is defined as

ET (σ) = Bnt

A(σ)cgk3 ,

in which a1, a2, and Bnt are constants, and σ1 is a prognostic frequency. According to the
definition of this source term, the breaking happens if the energy spectrum at the frequency
of σ exceeds the corresponding threshold value of ET (σ).

Sea surface roughness length parameterizations

Appropriate parameterization of roughness length is crucial to better compute the sea
surface fluxes (Porchetta et al., 2019; He et al., 2021). Most atmospheric models use the
Charnock (1955) relation to calculate the roughness length over the sea:

z0 = α
u2

∗a

g
, (2.21)

where α is the Charnock parameter (with a default value of 0.018 in the WRF model).
Several field measurements have confirmed the dependence of z0 and CD to the sea-

state, wave age, steepness, and fetch (e.g. Donelan, 1982; Smith et al., 1992; Oost et al.,
2002; Hwang and Shemdin, 1988; Johnson et al., 1998; Taylor and Yelland, 2001; Lange
et al., 2004; Jiménez and Dudhia, 2018).

Hsu (1974) calculated the roughness length using the significant wave height Hs and
the wave length L from laboratory measurements as follows:

10
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z0 = aHs

(
u∗a

cp

)2

(2.22)

where cp =
√

gL/2π is the peak phase velocity. Donelan (1990) improved the above
representation by considering the fact that z0 does not always depend on the square of
(u∗a/cp):

z0 = a1Hs

(
u∗a

cp

)b1

. (2.23)

Here a1 and b1 are two constraint values. Drennan et al. (2003) combined several observa-
tional data from field experiments under a variety of atmospheric and sea-state conditions,
and estimated a1 = 3.35 and b1 = 3.4.

Taylor and Yelland (2001) developed an alternative relation for z0 based on wave steep-
ness. They used wavelength at the peak of the wave spectrum Lp and Hs.

z0

Hs

= 1200
(

Hs

Lp

)4.5

. (2.24)

Jiménez and Dudhia (2018) proposed a relationship for z0 for the shallow water using
measurements at FINO1 based on bathymetry and friction velocity:

ln
(

z0

z1m

)
= 2.7u∗a − 1.8/b

u∗a − 0.17/b
, (2.25)

where b = (1/30) ln(1260/d) and d indicates the water depth. They showed that above
formulation is able to reduce the wind speed bias in the NWP models

Recently, Porchetta et al. (2019) developed a parameterization scheme for z0 to account
for the wind-wave misalignment based on wind and wave information at the FINO1 and
ASIT offshore sites:

z0

Hs

= 20 cos (0.45θ)
(

u∗

cp

)3.8 cos (−0.32θ)

, (2.26)

where θ denotes the difference between the wind and wave directions. They showed that
the roughness length increases with increasing misalignment

What these studies all show is that the exchange of momentum and energy is extremely
governed by the ocean waves, and wave-wind interaction is very important to simulate and
forecast the wind fields over the oceans in the NWP models.

3 Data and tools
In this section, we describe the data used in this report. The data are categorized into two
sections: Observed and reanalysis data. The observed data include the available measure-
ments at the two stations: Teesside and FINO1.
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Figure 3.1: The Teesside (a) and FINO1 (b) mast stations and the nearby wind farms.
The plotting region sizes are 15x15 km.

3.1 Observed data
Teesside

• Teesside’s meteorological mast with 10-min sampling frequency data includes: (1)
wind speed average and standard deviation at 10 m, 30 m, 50 m, and 80 m; (2)
wind direction average and standard deviation at 8 m, 28 m, and 48 m; and (3)
temperature, relative humidity, and atmospheric pressure at 10 m and 50 m. The
data coverage is from 10 Sep. 2015 to 2 Feb. 2018.

• Bouy’s wave data ranges from 12 Sep 2015 to 28 May 2019 including sea surface
temperature, wave’s peak period, peak direction, peak spread, significant wave height,
the height of the highest wave, and the zero up-crossing period.

• SCADA data of 27 turbines of the Teesside offshore wind farm about 2 km to the east
of the Teesside meteorological mast station. The data includes 10 minute average of
ambient wind and standard deviation, nacelle angle which can be used to estimate
the ambient wind direction, wind power production, and many other technical data
of turbines.

Figure 3.2 shows the SCADA and mast data for two days (21–23 Nov 2015). The
SCADA mean wind speed is averaged using two methods: using all turbine data (SCADA
total averaged) or using only the turbines on the front rows that face the headwind (SCADA
headwind averaged). Overall, the SCADA and the mast data are quite close to each other
but some small differences exist. Those differences might result from several possible causes.
The first reason is the distance between the Teesside mast and the wind farms, which is
about 1.4 km, although small, but still can cause some significant differences in wind speed
and direction in some situations, especially because the wind park is very close to the shore
(about 1.5 km). The differences seem to depend on the directions (Fig. 3.2d), which is
likely affected by the surrounding topography as the mast station is located right on the
shore. The second reason might come from the wake effect between the turbines (Sun
et al., 2020), where the wind speed at a downstream wind turbine is reduced because of
an upstream one. For this reason, the SCADA headwind averaged wind speed is closer
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Figure 3.2: An example of the Teesside mast and SCADA data from 21 Nov. to 23 Nov.
2015: (a) SCADA wind speed; (b) SCADA wind direction (c) Averaged SCADA wind speed
vs mast; and (c) Averaged SCADA wind direction vs mast.
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Figure 3.3: Speed difference between the Teesside’s SCADA vs mast data relative to the
wind direction. The data ranges for the analysis from 10 Sep 2015 to 31 Dec 2015.

Table 3.1: Wind speed errors (see section 3.11) between Teesside’s SCADA vs mast data,
assumed that the mast data represents the ground truth.

- N NE E SE S SW W NW All direc.
MBE –0.85 –0.46 –0.3 –0.4 –0.59 –0.77 0.03 0.01 –0.52
MAE 0.94 0.67 0.91 1.1 1.18 1.08 0.87 0.8 1.03
RMSE 1.24 0.93 1.22 1.43 1.58 1.36 1.1 0.98 1.34

to the mast’s observation and larger than the SCADA total averaged in most cases. The
third possible reason comes from the turbine blockage effect (Medici et al., 2011), where
the wind reduction in front of each turbine can result in a lower measured wind speed than
the far-field ambient wind. This effect may be more noticeable during the high-wind speed
periods, for example around 06Z 21 Nov. 2015 (Fig. 3.2c).

Figure 3.3 and Table 3.1 illustrates the distribution of the difference between the head-
wind averaged SCADA data and the mast data from Sep to Dec 215. Overall, the SCADA
wind speed is weaker than about 0.5 m/s than the mast data. The MAE and RMSE are
about 1 m/s and 1.3 m/s, respectively. The negative bias of the SCADA over the mast is
largest for the north direction and from the southeast to southwest directions.

FINO1

The FINO1 offshore research platform (Fischer, 2006) is the first platform of the research
project FINO (Forschungsplattformen In Nord und Ostsee—Research Platforms in the North
Sea and Baltic). Data for FINO1 are listed as follows:

• The FINO1’s meteorological mast has the cup anemometers that measure the 10-min
average standard deviation of wind speed at 33 m, 40 m, 50 m, 60 m, 70 m, and 90
m. Notice that the cup anemometers are located to the southeast of the mast’s pole
(Fig. 3.4), thus the pole can affect the wind from the northwest. The met mast is
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Figure 3.4: A top-view sketch of the FINO1 meteorological mast.
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Figure 3.5: Wind speed differences between the FINO1’s cup anemometer at 90m and the
LiDAR from 22 May 2015 to 31 Dec 2015.
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Figure 3.6: Wind speed differences between the FINO1’s cup anemometer vs LiDAR data
relative to the wind direction. The data ranges for the analysis from 10 Sep 2015 to 31
Dec 2015.

Table 3.2: Wind speed errors (see section 3.11) between FINO1’s cup anemometer vs
LiDAR data at 90 m, assumed that the LiDAR data represents the ground truth.

- N NE E SE S SW W NW All direc.
MBE 0.52 -0.12 -0.07 -0.19 -0.05 0.41 0.39 -3.08 -0.09
MAE 1.82 0.58 0.79 0.58 0.68 0.81 1.06 3.14 1.01
RMSE 1.04 0.82 1.11 0.78 0.96 1.14 1.41 3.73 1.54

also located in a region surrounded by a couple of off-shore wind parks nearby, and
their wake effect may significantly affects the wind at the met mast, especially the
Alpha Ventus wind park locates just about 400 m to the east (Fig. 3.1). We have
data coverage from 1 May 2015 to 31 Dec. 2015.

• LIDAR data includes 10-min averaged wind speed and direction up to 3126 m. Note
that there may be missing data in time and at different heights. Data coverage is
from 1 Aug 2015 to 1 Sep 2016.

• Sonic high-frequency data with sample frequency of 25 Hz for June, July, and Septem-
ber 2015. Data contains 3-dimensional wind components and temperature.

From the positions of the cup anemometers relative to the mast’s pole (Fig. 3.4), we can
expect the shadow effect occurs for the wind blows from the northwest. Figure 3.5 quantifies
this shadow effect by comparing the cup anemometers and the LiDAR’s observation in
different wind direction angles. There is a bias mismatch with the wind direction between
285 ◦ and 345 ◦ with the largest difference at 315◦ (North-West direction).

Figure 3.6 and Table 3.6 show the distribution of the errors between the FINO1’s mast
wind speed versus the LiDAR data, assuming that the LiDAR represents the ground truth.
As expected, when taking an average of all the directions, the mast and the LiDAR data
are quite close to each other with almost zero bias and MAE and RMSE are approximately
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1 m/s and 1.5 m/s respectively. However, the shadow direction of NW suffers a heavy
negative bias of 3 m/s with MAE and RMSE of 3.1 and 3.7 m/s, respectively. Interestingly,
the directions adjacent to the shadow zone suffer a slight positive bias of about 0.5 m/s.

3.2 Reanalysis gridded data
• We use the fifth-generation ECMWF hourly reanalysis (ERA5, Hersbach et al., 2020)

on surface and pressure levels for WRF input and lateral boundary conditions. The
data have a resolution of 0.25◦ (roughly 27 km) on 37 pressure levels from 1000 hPa
to 1 hPa and provides hourly data for a large number of atmospheric, ocean-wave, and
land-surface quantities. The ERA5 reanalysis on pressure levels can be downloaded
from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels.

• For the lower boundary condition, we replace the ERA5 SST with the Operational
Sea Surface Temperature and Sea Ice Analysis (OSTIA, Stark et al., 2007; Donlon
et al., 2012), with a daily temporal frequency and a 0.05◦ horizontal resolution.

• The CORINE (Coordination of Information on the Environment) Land Cover (CLC)
2018 version data can be downloaded from https://land.copernicus.eu/pan-european/
corine-land-cover/clc2018. We downloaded the data in raster format with a resolu-
tion of 100 m and converted it to WPS’s geogrid format with a resolution of 0.001◦

for creating the WRF’s a higher resolution with lower boundary conditions.
• The Digital Elevation Model over Europe (EU-DEM) v1.1 data is downloaded from

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1/view for some spe-
cific sites, for example, the Teesside region. The data is downloaded in a raster format
with a resolution of about 30m, then converted to WPS’s geogrid format for WRF-
LES simulation.

• Some simulations are compared with the the 3-km Norwegian Reanalysis (NORA3,
Haakenstad et al., 2021) data. The NORA3 wind and wave 3-km hindcast data can
be downloaded from https://thredds.met.no/.

• General Bathymetric Chart of the Oceans (GEBCO) bathymetric data set for coarse
WRF domains (resolution of 3km and over), GEBCO is a global elevation data with
a resolution of 15 arc-second and is available on the website: www.gebco.net/data
and products/gridded bathymetry data.

• EMODnet bathymetry for finer domains (smaller than 3 km). EMODnet is the
bathymetry data produced by the European Marine Observation and Data Network
for Europe’s sea basins with a grid resolution of 1/16 × 1/16 arc minute (about 115
× 115 meters) (www.emodnet-bathymetry.eu).

3.3 The WRF model
The Weather Research and Forecasting (WRF) Model (Skamarock et al., 2019) is an
open-source mesoscale numerical weather prediction system designed for both atmospheric
research and operational forecasting applications. The advanced research WRF (ARW)
dynamical core serves a wide range of multi-scale applications, from the synoptic scale of
thousands of kilometers down to microscale of tens of meters to thousands of kilometers.
The WRF-ARW modeling system is community-maintained on Github’s repository at https:
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Figure 3.7: WRF nested domains for Teesside (a) and FINO1 (b) regions.

//github.com/wrf-model/WRF/ with the latest version of 4.3.3 (by 10 March 2022).
We used the latest version of WRF-ARW with the main input data from the hourly

ERA5 reanalysis (Hersbach et al., 2020). Because of the importance of the Sea Surface
Temperature (SST) and the land-sea distribution, we use the OSTIA high-resolution SST
reanalysis with a resolution of 0.054 degrees (or roughly 6 km) (Stark et al., 2007), which
is linearly interpolated from a daily basis to hourly basis to accommodate with the ERA5
data.

For the mesoscale’s experiments, we use three-level nesting domains (Fig. 3.7): the first
domain (D01) has a resolution of 9 km and covers a part of north-west Europe and a part
of North Atlantic to downscale the large scale feature from the reanalysis data; the second
domain (D02) has a resolution of 3 km and covers the North Sea regions; and finally, the
third domain (D03) centered around the target interested region Teesside (Fig. 3.7a) or
FINO1 (Fig. 3.7b) with a resolution of 1 km and domain size of 384 km × 384 km. We
use 60 stretched vertical levels with the highest resolution near the surface of about 10 m
and 21 levels below the height of 500 m.

In all the studies in this report, the control (CTRL) experiment for the WRF uses the
built-in CONUS physics suite (Wang et al., 2021), with the planetary boundary layer and
surface layer schemes replaced by the MYNN schemes because of their popularity among
wind energy applications. Table 3.3 summarizes the physics and dynamics options of the
CTRL experiments. Note that the cumulus option is only used for the outermost 9-km
domain. The inner domains have grid sizes that are fine enough to enable the explicit
convection and thus the scheme is turned off.

3.4 The COAWST model: WRF-SWAN
COAWST (Coupled Ocean-Atmosphere-Wave-Sediment-Transport) modeling system (Warner
et al., 2010) is an open-source tool that includes a Regional Ocean Modeling System
(ROMS) for the ocean; WRF, hydrology model (WRF-Hydro) for the atmosphere; Simu-
lating Waves Nearshore (SWAN), WAVEWATCHIII, and InWave model for waves;— the
USGS Community Sediment Models for sediment transport; and a sea ice model. The
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Table 3.3: The physics and dynamics options for the WRF’s control (CTRL) experiment
design.

Option type Option name Namelist group Namelist value
Micro physics Thompson (Thompson

et al., 2008)
mp physics 8

Cumulus parame-
terization

Tiedtke scheme (Zhang
et al., 2011)

cu physics 6

Planetary bound-
ary Layer

Mellor–Yamada Nakan-
ishi Niino Level 2.5
(MYNN2) (Nakanishi
and Niino, 2006)

bl pbl physics 5

Surface layer MYNN sf sfclay physics 5
Shortwave radia-
tion

RRTMG (Iacono et al.,
2008)

ra sw physics 4

Longwave radia-
tion

RRTMG ra lw physics 4

Land Surface Unified Noah Land Sur-
face Model

sf surface physics 2

Figure 3.8: Exchangeable parameters between WRF and SWAN in the COAWST system.

COAWST system can be very useful for offshore studies because it can consider/model
the complex interactions between the ocean, waves, and the atmosphere (e.g. see (Bene-
tazzo et al., 2013; Olabarrieta et al., 2012; Bai et al., 2020; Calvino et al., 2021)). In this
study, the atmosphere model (WRF) and a wave spectral model (SWAN) are used for the
mesoscale modeling of WP2 multiscale framework. SWAN is a third-generation spectral
wave model that solves the evolution of wave action by accounting for wave propagation,
shoaling, wave refraction over bathymetry, and the effects of ocean currents. This model
incorporates further the effects of the nonlinear triad and quadruplet wave-wave interac-
tions, and wind-wave growth, as well as the dissipation due to the white capping, bottom
friction, and depth-limited breaking. There is a coupler in the COAWST model (the Model
Coupling Toolkit (MCT) that enables the exchange of data between different model compo-
nents (Warner et al., 2010). The parameters that are transferred between WRF and SWAN
models are illustrated in Fig. 3.8. To account for the effects of wind-wave interaction in
the COAWST model, there are three different formulations based on Taylor and Yelland
(2001), Eq. (2.24), Drennan et al. (2003), and Oost et al. (2002). In the online approach,
the WRF model provides the horizontal wind data (at 10 m height) for the SWAN model,
and the significant wave height, Hs, and the peak wavelength are transformed from SWAN
to the WRF model.
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3.5 WRF offline wind-wave interaction
To consider the wind-wave interactions, we develop/apply two (Offline and Online) methods
and compare them against available observational data. The online method was explained
briefly above. In the offline method, we develop modules and modify some scripts in the
WRF model to read wave parameters (significant wave height, wave period, and wave
direction) from ERA5 data and interpolate them in time and space to the WRF grid to
calculate the roughness length based on formulations by Porchetta et al. (2019), Taylor and
Yelland (2001), Oost et al. (2002) and Drennan et al. (2003). Hence, this method is called
offline wave-wind coupling. The offline wave-wind coupling has several advantages: it can
run stand-alone with the WRF; is relatively easy to implement; and costs less computational
resources compared to online wave-wind coupling models. In this report, we evaluate
the performance and accuracy of both online and offline wind-wave coupling systems in
simulating wind and energy production.

Previous studies showed that differences in wind-wave direction can affect roughness
length over the sea (see Patton et al., 2015; Porchetta et al., 2019). So, in this study, we
choose two different periods to evaluate the models based on misalignment and alignment
between wind and wave directions. Based on Porchetta et al. (2021b), we classify the wind-
wave alignment into three categories. When the difference between the wind and wave
directions is more than 120o (less than 60o), it is considered misalignment (alignment).
Figure 3.9 shows the differences between the wind and wave directions during the entire
2015. As can be seen, the frequency of misalignment cases is very low in September and
there are lots of alignment cases during September. Therefore, we select some days during
September (i.e. between 03− 17) containing a reasonable number of alignment cases. For
the misalignment, we select a period containing some misalignment episodes in July 2015
(i.e. 10 − 12 and 20 − 26 July 2015). Figure 3.10 shows the selected study periods used
in our analyses.

Figure 3.9: differences between wind and wave direction using NORA3 hourly data during
the whole of 2015. A difference of more than 120◦ indicates misalignment and a difference
of less than 60◦ indicates an alignment.

The results are compared with wind measurements at the FINO1 station. The COAWST
V3.7 is used for the online coupling of the WRF and the SWAN models. Three domains
in both models with the same sizes are defined (see Fig. 3.7b). The initial and boundary
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Figure 3.10: Differences between wind and wave directions using NORA3 hourly data
during: a) 10−12 July 2015 (a misalignment period); (b) 20−26 July 2015 (a misalignment
period); and (C) 3 − 17 September 2015 (an alignment period). An angular difference of
more than 120o indicates a misalignment case and a difference of less than 60o indicates
an alignment event. These two thresholds are indicated by the two horizontal red lines
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conditions for the WRF and SWAN models are obtained from ECMWF ERA5 data. We use
significant wave height, wave period, and wave direction to generate the boundary forcing
information of the SWAN model. Some atmospheric parameters (like air temperature, pres-
sure, humidity, geopotential and etc) are also extracted to create the initial and boundary
conditions for the WRF model.

In order to examine the effects of shallow water in an offline coupled system, bathymetry
data is also ingested into the WRF model. Bathymetry data is provided from two data
resources. We use GEBCO bathymetric data set for coarse domains (i.e. domains D01 and
D02), and EMODnet bathymetry for the finer domain (i.e. domain D03).

Shallow water in the offline coupling system is defined as the water depth being less
than half a wavelength, which is calculated by:

λ = g

2π
T 2, (3.1)

where g is the gravitational acceleration, λ denotes the wavelength, and T is the wave
period. In the deep water, the phase velocity cp is calculated from:

cp =
√

gλ

2π
= g

2π
T (3.2)

But in shallow water cp depends on the water depth, h (see Stockdon and Holman
(2000)):

cp =
√

gh (3.3)

In the offline wave-wind coupling simulations, we linearly interpolate the ERA5 hourly
data to 30 minutes (any user-defined coupling timestep). In this study, we test 5 different
experiments including: CTRL, offline wave, online wave, (Mis)Alignmen, com1 offline. The
CTRL experiment uses the WRF model without any wave coupling method and it utilizes
the default WRF formula to calculate the roughness length over the ocean. offline wave,
online wave, and (Mis)Alignmen experiments use the same physics configurations but with
different formulations for calculating the roughness length. Experiment com1 offline utilizes
physics configurations of com1 (see Table 5.2) and it uses the roughness length formula sim-
ilar to the Offline wave experiment. For the offline wave, online wave and com1 offline ex-
periments, we use Drennan et al. (2003) and for the (Mis)Alignmen run, we used Porchetta
et al. (2019) formulation, i.e. Eq. (2.26). Experiment com1 wave uses a different physics
configuration compared with other experiments (which is one of the optimal setups obtained
in our sensitivity studies for an OCC event, see Table 5.2).

The online wave simulations are carried out with WRF-SWAN coupled system. We
define, the same as offline case, 3 domains with the same sizes for the WRF and the SWAN
models with a horizontal resolution of 9 km, 3 km, and 1 km. Boundary conditions for the
SWAN model extracted from the NORA3 data. The GEBCO bathymetry datasets are used
for the domains D01 and D02, and the EMODne data is used for the domain D03. We set
25 frequency bands from 0.04 Hz to 1 Hz, and 36 directional bins for the SWAN model.
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Table 3.4: Physics configurations for different wind-wave interaction experiments.
Experiment PBL Surf. layer Sh.wave rad. Lo.wave rad. roughness length

CTRL MYNN2 MYNN RRTMG RRTMG Charnock
Offline wave MYNN2 MYNN RRTMG RRTMG Drennan Offline
Online wave MYNN2 MYNN RRTMG RRTMG Drennan Online
Porchetta MYNN2 MYNN RRTMG RRTMG Porchetta Offline

com1 wave BouLac Eta Dudhia RRTM Drennan Offline

3.6 WRF large eddy simulation: WRF-LES
3.6.1 WRF-LES online nesting

In this section, we use the online nesting technique for the WRF-LES simulation. The
advantage of this method is that the LES domain can get the environmental information
from the mesoscale model at every time step instead of at a coarse time interval as in
the offline nesting technique. The simulations include four or five domains with the first
three domains being the WRF domains for solving the Reynolds averaged Navier Stokes
equations (RANS) and domains 4 and 5 are the LES domains. The first 3 domains have
the resolutions of 9 km, 3 km, and 1 km (similar to Fig. 3.7), and the same configuration
as the WRF experiments. The two LES domains have the resolutions of 200 m and 40
m with the target site in the center (for example, see Fig. 7.1). For the LES domains,
the boundary layer parameterization is turned off. The diffusion mixing is evaluated using
stress form (diff opt=2). The eddy coefficient can be estimated using either the 1.5 TKE
closure (km opt=2) or Smagorinsky’s first order closure (km opt=3). The TKE closure
and Smagorinsky can also be used with the option of nonlinear backscatter anisotropic
(NBA, sfs opt=1). We also examined another experiment using the Weighted Essentially
Non-Oscillatory (WENO Shu, 1998), by changing the advection options * adv opt, see 3.5
for detail). Table 3.5 summarizes the experiments and the WRF namelist options that we
used for this study.

Table 3.5: WRF namelist option for the LES experiments
- LES CTR LES Smag LES NBA LES NBA Smag LES Weno

km opt 2 3 2 3 2
sfs opt 0 0 1 1 0
km opt 2 3 2 3 2

moist adv opt 1 1 1 1 4
scalar adv opt 1 1 1 1 3

momentum adv opt 1 1 1 1 3

For the LES simulation around the Teesside region, because of its coastal location,
the influence of the land-sea contrast as well as topography may play an important role.
However, the finest topography and landuse resolution provided with the WRF distribution

23



HIPERWIND 3 DATA AND TOOLS

has the finest resolution of roughly 1 km, which is not fine enough for the LES simulation.
For the terrain height, we converted the Digital Elevation Model over Europe (EU-DEM),
with the original resolution of 25m, to the WPS geogrid format with a resolution of about
50 m. For land use, we converted the CORINE Land Cover (CLC) database of 2018 to the
geogrid format with a resolution of 100 m and 21 Modis categories.

3.6.2 Cell perturbation method

Traditional LES models usually use the periodic lateral boundary condition. Thus the
turbulent eddies have enough time to fully develop into a pseudo-equilibrium state. However,
with the nesting technique, the small-scale turbulence cannot come from the outer domain
into the inner domain and the eddies may not have enough time to develop fully, especially
with the small inner domain, high ambient wind speed, or under a stable boundary layer
condition.

To overcome the turbulent spin-up problem, we use the cell perturbation method (Muñoz-
Esparza et al., 2014, 2015), which is a simple, fast, and effective method for a more realistic
turbulent representation. The method applies a uniform random perturbation within an in-
terval [–0.5, 0.5] for three 8×8 grid point cells (thus 24 grid points are perturbed) near the
inflow boundary. In our real data application, we apply the perturbation for all four lateral
boundaries to account for all situations. Also, in the idealized setup of Muñoz-Esparza
et al. (2014), the perturbations are introduced at every vertical grid point up to two-thirds
of the inversion layer, which depth is known in the idealized setting. In our approach, the
perturbations are applied with full magnitude up to 400 m, then relaxed to zero at 1000 m.
We also test an option to apply the perturbation for vertical cells of 8 grid points instead
of every grid point as in the original paper.

Because the cell perturbation method is not available with the distribution of WRF, we
implement our own WRF modification. First, registry entries are added to WRF to include
new namelist options (Table 3.6) and one 3D field, cell perturb th to the WRF input file.
To simplify the process, we created a python script to modify the variable directly after the
WRF inputs of the LES domains are generated.

During the run time, this perturbation is added to the potential temperature field.
However, as pointed out by Muñoz-Esparza et al. (2014), the perturbing process should not
be done at every time step, but at an interval that is at least equal to the perturbation time
scale, Ts = 2πk−1

minU−1
g , where U is the characteristic velocity scale and kmin = 2π/8∆x.

Thus Ts = 8∆x/U , is the needed time for the perturbation to be advected over eight grid
sizes. In our coarse LES experiment, ∆x = 200 m, thus a characteristic velocity 5 m/s
will results in Ts = 320s. Finally, we provide another option, ‘cell pert alternate‘, which
will change the sign of the perturbation alternately, so that the perturbation will resemble
a simple oscillation instead of a fixed value.

3.7 The PALM model
In the present work, we use the Large-Eddy Simulation (LES) tool PArallelized Large-eddy
simulation Model (PALM, Maronga et al., 2015, 2020), developed at the Institute for
Meteorology and Climatology of Leibniz University Hannover. PALM has been optimized
for massively parallel architectures and has the ability to simulate atmospheric and oceanic
flow fields under varying atmospheric stability and boundary forcing conditions through
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Figure 3.11: PALM grid structure at the lateral boundaries with non-cyclic lateral boundary
conditions: (a) along the left-right direction; and (b) along the north-south direction. Figure
is adapted from https://palm.muk.uni-hannover.de/trac/wiki/doc/tec/bc.
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Table 3.6: WRF namelist options for the cell perturbation (namelist group: cpert)
Name Default value Description
cell pert 0 (For each domain) =1 will turn on

the cell perturbation
cell pert interval 320 (For each domain) Perturbation time

interval in seconds
cell pert alternate 0 =1 will alternate the sign of the per-

turbation
cell pert magnitude 0.5 Perturbation magnitude (K)

the cooling/heating of the surface. It utilizes the central finite difference approach to
spatially discretize the filtered non-hydrostatic and incompressible Boussinesq-approximated
Navier–Stokes equations. This model uses a uniformly spaced Cartesian grid with Arakawa
staggered C-grid type (grids are allowed for stretching in the vertical direction). Prognostic
equations of PALM are solved for five quantities: the wind, the potential temperature, the
water vapour mixing ratio, a passive scalar, and the subgrid-scale turbulent kinetic energy.
PALM uses a third-order Runge-Kutta scheme for the time advancement and the advection
terms are solved by a fifth-order Wicker-Skamarock scheme. A modified Smagorinsky
methodology (following Deardorff) can be used to implicitly parameterize the subgrid-scale
turbulence (Maronga et al., 2020). PALM has the ability to account for cyclic and non-cyclic
boundary conditions (see Fig. 3.11), and it generates time-dependent turbulent inflow in
the case of non-cyclic boundary conditions through a turbulence recycling method.

In order to create a fully developed turbulence (both in time and space) in a more
idealised setting, PALM uses: (a) cyclic precursor simulation which is computationally
expensive particularly for the convective stability conditions (i.e. non-stationary flow); and
(b) a synthetic turbulence approach by knowing the information regarding to the turbulent
length/time scales for the velocity fields and the Reynolds stresses. Therefore, the wind
velocity (ui for i = 1, 2, and 3) at the inflow boundary can be decomposed as

ui = ūi + aiju∗j,

where ūi represents the mean velocity component, aij is the amplitude of the Reynolds
stress, and u∗j denotes the fluctuating velocity with a zero mean and a zero cross-correlation.
The turbulent wind can be calculated based on timescale, T , and lengthcale, L, as follows
(Kim et al., 2013):

u∗j(t + ∆t) = u∗j(t) exp
(
−c∆t

T

)
+ Ψj(t, L)

[
1− exp

(
−2c∆t

T

)]0.5

, (3.4)

where c is the phase velocity to be calculated for each velocity component, and Ψ denotes a
prescribed function to implement the effect of length scale along the vertical and spanwise
directions. The generated turbulence is then correlated in space and time, according to the
above. In this method, turbulence is added to the velocity field and not to the potential
temperature and subgrid-scale turbulent kinetic energy.

Simplified turbine models have been recently implemented in the PALM in order to study
the effects of wind turbine wakes on flow field variation in the areas of wind farms. Namely,
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two models are (Maronga et al., 2020): (a) the Actuator Disk Model (ADM); and (b)
the Actuator Disk Model with Rotation (ADM-R). The latter is less representative than
the actuator line model but it is much more computationally efficient. The ADM-R in the
recent version of PALM contains the parameters of the NREL 5 MW research turbine (with
a hub height of 90 m and a rotor diameter of 126 m. The rotor speed in the PALM ADM-R
is adjusted in accord with the fluctuating inflow through a generator torque controller. For
instance, in the ADM model, the wind turbines exert a thrust force into the inflow field to
harness a certain amount of energy from the wind. The thrust force is given as follows:

FT = 1
2ρaCT (a)AU2

∞, (3.5)

where according to the 1D momentum theory, CT (a) = 4a(1− a) is the thrust coefficient
as a function of axial induction factor a (one of the wind turbine control parameters which
is less or equal than 1/3 according to the Betz limit), ρa is the air density, A denotes the
swept area of the rotor plane, and U∞ is the upwind effective wind speed far from the rotor
disc. Using a, we can define the disc-averaged wind as follows:

Ud = (1− a)U∞, (3.6)

The thrust force for the ith turbine with axial induction factor of ai and the disc-averaged
wind Udi

in a wind park can be then rewritten as

FTi
= 1

2ρaCT (ai)A
(

Udi

1− ai

)2
, (3.7)

Time-varying power extracted from the incoming flow at ith turbine is given by
Pi = FTi

Udi
.

3.8 Mesoscale-microscale offline nesting: WRF-PALM model
In this mesoscale-microscale offline nesting, we first run the WRF model to downscale
the global reanalysis ERA5 data to a 1-km grid and 10-min output resolution. Then the
atmospheric fields from the WRF output are interpolated to the PALM model. Figure 3.12
illustrates the innermost 1-km WRF domain and the nested 270-m PALM domain around
the FINO1 region.

PALM is able to account for the non-stationary and spatially heterogeneous conditions
using nesting of its parent domain into the results of a mesoscale model. In this way, there
are two major steps: (a) external processing to interpolate (horizontally and vertically) the
forcing (mesoscale) data along the outer boundary cells of the PALM parent domain; and
(b) PALM internal processing that interpolates the nesting input data in time, removes
any residual divergence, and superimposes the turbulence to the velocity fields using the
synthetic turbulence scheme described in the previous subsection.

In order to generate the lateral and top boundary conditions for PALM, the following
WRF fields are used: (1) velocity; (2) thermodynamic fields (e.g. pressure, temperature,
etc.); (3) soil information; (4) vertical grid structure; and (5) some other required geo-
graphical information. In this work, we update the PALM boundary information every 10
minutes. Non-cyclic boundary conditions are applied along all boundary cells (within the
sponge layer) of the PALM parent domain.
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Figure 3.12: WRF fine resolution domain (i.e. D03 with 1 km horizontal resolution) and
PALM outer domain with horizontal resolution of 270 m. The right-hand-side panel shows
the flow chart corresponding to the offline WRF and PALM nesting.

3.9 Observation-based WRF modelling
We have shown how the coarsely resolved WRF regional simulations can be dynamically
downscaled to provide spatiotemporal boundary data for the fine-scale models. The results
show that such model (grid-spacing) refinements are able to enhance the performance and
accuracy of modelling system. However, some more accuracy can be achieved if: (1) we
nudge the model towards the available (met-mast or LiDAR) observational data that reflect
the effects of local geophysical variability; or (2) use other data assimilation techniques (such
as 3DVAR and 4DVAR) based on qualified available observational datasets.

3.9.1 Observation nudging

Observation nudging belongs to the Four-Dimensional Data Assimilation (FDDA) family in
which each grid point is nudged towards the observation. The observation data locates a
user-defined radius of influence and the nudging in time and space is performed by the use
of a weighted average of differences between the observation and model. Here, we present
the nudging of wind speed and direction with a time interval of 3 h for a few points between
an altitude of 75 m and 1200 m (depending on the availability of the LiDAR observational
data). In the nudging-based methods, nonphysical forcing terms are added, for example, in
the prognostic equations of momentum as follows (see Skamarock et al. (2019)):

dχµ

dt
(x, y, z, t) = Fχ(x, y, z, t) + µGχ

ΣN
i=1W

2
χ(i, x, y, z, t)[χo(i)− χm(xi, yi, zi, t)]

ΣN
i=1Wχ(i, x, y, z, t) (3.8)
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Figure 3.13: (a) Representation of radius of influence in a Cressman function scheme;
and (b) schematic of the offshore FINO1 platform incorporating an upward-looking LiDAR
system. Vertical lines show the pressure levels will be used in observation nudging (black
horizontal lines) and the one cannot be used due to quality control constraints of nudging
conversion tool (orange line).
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Table 3.7: Values of nudging coefficients used in this study.
potential temperature U and V winds water vapour geopotential height .

5× 10−5 5× 10−5 5× 10−6 −

where µ denotes the dry hydrostatic pressure, χ indicates the nudging quantity (here wind
speed and wind direction), and Fχ and Gχ refer to the physical tendency and the nudging
strength of variable χ respectively. For N assimilation points, Wχ shows the spatiotemporal
weighting function between observations χo and the model results at grid cells χm. These
weights highlight the strength of nudging in space and time, and can then be divided into
two groups: the spatial nudging weights (associated with the xy horizontal nudging and
the z vertical nudging); and the temporal nudging weights (varying between 0 and 1). We
select nudging time windows of 1h and 3h and assure that the used observations do not
overlap through a quality control process. Table 3.7 contains the values used in this study.

For the horizontal weighting function, Wh, we use the distance between the model
grid cells and observation location, D, as well as the radius of influence, R based on the
Cressman scheme as follows:

Wh =


R2−D2

R2+D2 if 0 ≤ D ≤ R

0 otherwise

3.9.2 WRF data assimilation

In this report, we explain the Data Assimilation (DA) system in WRF (i.e. WRFDA) that
incorporates different deterministic (like 3DVAR and 4DVAR) or probabilistic assimilation
techniques. We use the 3DVAR DA system by incorporating LiDAR data in the WRF
modelling system. 3DVAR works by iteratively minimizing a cost function J(x) for a
control variable x as follows (Barker et al., 2003):

J(x) = 1
2(x− xb)T B−1(x− xb) + 1

2(y −H(x))T R−1(y −H(x)). (3.9)

The first term in the above equation is a background term including the analysis state
vector x and a background (or first guess) vector, xb. The second term is called the
observation term. This term contains the observation state vectors, y, and a function
H that maps the control variable x onto the observation vector space. There are two
important covariance matrices in the representation of J(x): the background error B and
the observation error matrix R. The covariance matrix B is a square and semi-definite
and symmetric matrix (i.e. with positive eigenvalues), and its diagonal elements contain
the variances of the background forecast errors. Assuming no correlation between different
observations leads to a diagonal matrix representation for the error covariance matrix R.

An appropriate determination of B is key in all variational DA approaches. There are
three different techniques to determine B: the NMC method, the innovation statistics-
based method, and the analysis ensemble method. We apply the NMC method which
is a widely used method for generating B (less computationally expensive and its results
look more physically acceptable). In this method, the forecast error covariance is estimated
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through the computation of the forecast difference statistics of, for example, 24h and 12h for
a month or longer period (Bakhoday-Paskyabi and Flügge, 2021). The results of WRFDA
will be explained in another article associated with HIPERWIND project and will not be
explored in this report.

3.10 Case selection
Open cellular convection events

Figure 3.14: An example of
the OCC event at 00Z Noveme-
ber 2015 that occurs over both
Teesside and FINO1 regions. Top
panel shows the Sea Surface Tem-
perature (SST) and T2m air tem-
perature (T2m) from ERA5 data
over the Teesside region. Bottom
panel shows the sea level pressure
(black contours), 10m wind vec-
tors, and satellite cloud images.

An OCC event occurs typically when SST is consistently larger than T2m (i.e. the
temperature of overlying air), which is often associated with a cold air outbreak event where
the cold air from the north or from the continent during nighttime blows over a warmer
sea surface. To select the OCC events, we generated a series of GIF animations of 1-day
frequency within two years 2015−−2016. Each animation cover 3 month periods with each
plot showing the SST and 2m air temperature, a horizontal distribution of sea level pressure,
10 m wind vectors, and satellite cloud images. The OCC events are selected manually from
the visual cue of these plots by considering the availability of the observational data.

3.11 Validation method
To validate the model results against corresponding observations, we use several statistical
parameters and charts. Observations of the wind data are acquired from meteorological
masts, LiDAR, SCADA, etc. To evaluate the model performance, two following statistical
parameters are used:
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an individual run

merged continuous time series

h1: spinup time h2: forecast range

Figure 4.1: A conceptual diagram explains the processing of merging individual simulation
to get a continuous time series with the forecast period from h1 to h2, where h1 is the
spin-up time and h2 is the forecast range.

Mean Absolute Error (MAE) as defined through

MAE = 1
N

N∑
i=1
|yi − oi|, (3.10)

where y denotes the wind speed simulated by the model and o is the reference wind speed,
for example, the observation in the same place and time, and N is the total number of
pairs of simulation-observation.

Another statistic to measure the error is the Root Mean Square Error (RMSE), which is
defined by:

RMSE =
(

1
N

N∑
i=1

(yi − oi)2
)1/2

. (3.11)

The Mean Bias Error (MBE), or simply bias, is defined by,

MBE = 1
N

N∑
i=1

(yi − oi), (3.12)

If the bias is positive, the simulated values tend to overestimate the truth; if it is negative,
the simulated values tend to underestimate the truth.

The wind speed is fitted with the Weibull distribution defined as follows

f(x; λ, k) =

 k
λ

(
x
λ

)k−1
e−(x/λ)k

, x ≥ 0,

0, x < 0,
(3.13)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.

4 A 2-month mesoscale simulation

4.1 Experiment design
Long-period simulations are important for wind energy applications, for example, to access
wind resources. Because the mesoscale processes have a limit of predictability, the simula-
tions with a long integration time, for example, longer than 7 days are usually not reliable
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and the shorter range forecasts are generally considered more reliable. However, the model
also needs some time for the fields to be in dynamic balance with each other. For this
reason, sometimes the first few hours are considered a spin-up time and are dropped. For
example, the NORA3 data (Haakenstad et al., 2021) is achieved by carrying out four 9-h
simulations a day and dropping the first 2 hours as the spin-up time.

To examine the effect of the simulation length, we first carry out 2-day simulations
starting at 00Z of each day, for two months from 1 July 2015 to 29 August 2015. This
simulation strategy results in 31 individual simulations that can be merged into a single
time series with different choices of the dropped spin-up time and forecast range. Figure
4.1 illustrates the method of merging by dropping h1 hours at the beginning of each run
and thus the effective forecast period is from h1 to h2, which is the maximum forecast
length. We name the case as experiment h1–h2, for example, experiments 0–24h use the
first day of each simulation for the merged series, while experiment 12–36h drops the first
12h and uses simulations from 12 h to 36 h of each run. We test 5 methods of merging
for this series of 2-day simulations: 0–24h, 6–30h, 12–36h, 18–42h, and 24–48h.

On the other end of the spectrum of the predictability for mesoscale processes, we carry
out 11 simulations with a range of 7 days and a run frequency every 5 days. The outputs
from different runs are merged to a single time series using the mentioned method by
dropping the first 2 days, thus resulting in the sixth experiment: 48–168h (i.e. the effective
simulation range is from 2 to 7 days).

Because of the limitation of the computation and storage, we use only the 9 km domain
(Fig. 3.7) to carry out all the experiments. The full 3-D outputs are produced every 3h,
but at the locations of the Teesside and FINO1 mast, we output the time series at every
model timesteps from the surface up to the height of 1500 m. These wind speed and wind
direction time series are then resampled to a 10-minute frequency and merged into 2-month
continuous time series using the above methods.

4.2 Simulations for FINO1 site
Figure 4.2 shows the merged time series of the WRF simulated wind speed at the height
of 90 m, which is hub height of the Alpha Ventus wind turbines, with different merging
methods compared with the mast’s cup anemometer and LiDAR observations. In general,
the WRF model at different simulation ranges can capture the magnitude of the wind speed
quite well for some periods, for example from 28 Aug. to 30 Aug. However, there are some
periods where the WRF’s simulation systematically overestimates the wind speed compared
to the observations, for example, around day 9–10 July and 23–24 Aug. These mismatched
periods, however, can be grouped into two types: the first type where the WRF’s speed is
larger than the mast’s cup’s observation, but close to the LiDAR’s observation, for example,
the period from 9–10 July; the second type where the WRF’s speed is larger than both
cup’s and LiDAR’s observations, for example, 23–24 Aug.

The NORA3 data is supposed to be superior to our simulations because of its shorter
range (9 h versus 24 h) and higher resolution (3 km versus 9 km) and it is indeed close to
the observation most of the time (Fig. 4.2). However, in the periods where there is a large
difference between the WRF’s simulation and the observation, for example, 14 Aug. or 23-
24 Aug., there is the same problem with the NORA3’s simulation. Interestingly, the NORA3
data also behaves similarly to the WRF during the two types of speed differences mentioned
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Figure 4.2: Time series of wind speed at 90 m of WRF’s results with different simulation
ranges compared with FINO1’s cup anemometer, LiDAR data, and NORA3 data. The
blue shades mark the regions with the wind direction between 285◦ and 345◦ (around the
North-West direction), the red shades mark the regions with the wind direction between
70◦ and 110◦ (around the East direction).
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above. If the observation is correct, then there are some fundamental processes that the
mesoscale models (WRF and HARMONIE-AROME used by NORA3) cannot capture, for
example, the wake effect of the wind turbines or small-scale turbulence. There is also a
possibility the errors come from the initial and boundary conditions, which is ERA5 for both
our simulation and ERA5. There are a few short periods where the NORA3 performs worse
than the WRF, for example, around 12Z, 7 July, and 28 Aug., which may come from a
coarse forcing of the lateral boundary conditions of 6h of NORA3 compared to 1h of our
simulations.

The first type of mismatch between the WRF and the cup’s observation can be attributed
to the errors in the observation. For example, Porchetta et al. (2019) mentioned a shadow
zone that affects the sonic anemometers caused by the mast when the wind direction is
60 and 200◦. However, because the position of the cup anemometers relative to the mast
are opposite to those of the sonic anemometers, we expect that the shadow zone for the
cup anemometers is also opposite. These mismatches consistently confirm the influence of
the mast pole on the observed wind speed of the cup anemometers. In Fig. 4.2, the wind
direction between 285 and 345◦ are marked with the blue shades.

The second type of speed mismatch cannot be explained by the shadow effect because
there is no systematic difference between the LiDAR and cup anemometers. From Fig.
3.1b, the FINO1 mast locates less than 500 m to the west of the closes wind turbine of
the Alpha Ventus offshore wind park. Thus, the wind speed at the FINO1 mast may be
influenced by the wake effects of the wind turbines when the direction is from the east. In
Fig. 4.2, we marked the directions between 70–110◦ (easterly wind) as red shades, which
well covers the second type of speed mismatch between the mesoscale simulations (WRF
and NORA3) and the observations (cups and LiDAR).

Figure 4.3 shows the wind roses for the two months of the FINO1’s cup anemometer
observation and WRF simulations with different ranges discarded the time steps where the
mast’s wind directions are within the shadow or wake zones. The majority of the wind
distribution comes from the west-southwest direction, which is well captured by the WRF
from the simulation ranging from 0–24h to 12–36h. However, the simulated wind slightly
rotated to the west direction.

4.3 Simulations for Teesside site
Contrary to the FINO1 mast station, which is quite far from land, the Teesside mast station
is right at the coast (Fig. 3.1) and thus may be influenced by more complex topography-
related atmospheric processes. The nearby offshore wind park is less than 2 km from the
east, thus a little further away compared to the FINO1 station. However, the wind park is
packed with a higher density of wind turbines and we should expect some influence from
the wake effect of the wind turbines.

For the Teesside region, the simulation period is outside of the coverage of our available
meteorological mast data. For this reason, we use the averaged wind speed of the SCADA
data at wind turbines of Teesside’s offshore wind park (Fig. 3.1a). Figure 4.4 shows the
time series of the WRF’s simulations and NORA3 data compared with the SCADA data.
Similar to the FINO1 region, the NORA3 and the WRF agree quite well with each other
and to the observation for most of the time. However, there are also some periods where
both the NORA3 and WRF are diverse from the SCADA data, for example, 23–24 Aug.
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Figure 4.3: Windroses for the two-month period of FINO1’s cup observation at 90 m vs.
WRF’s simulations
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Figure 4.4: Time series of wind speed at 80 m of WRF vs SCADA’s wind speed of 27
Teesside’s turbines and NORA3 data.

37



HIPERWIND 4 A 2-MONTH MESOSCALE SIMULATION

Because we don’t use the Teesside mast data, the issues of shadow effect as well as the
wake effect on the mast location are excluded. However, there are also some periods where
htere are large mismatches between the WRF and SCADA data, for example from 21 to
23 Aug 2015. The NORA3 data also behaves similarly to the WRF during these periods.
Thus, these mismatches can result from several reasons: the wind speed difference between
locations of the mast and the wind farm, or small-scale processes that the mesoscale models
cannot capture.

Figure 4.5 displays the windroses for the Teesside wind farm’s headwind averaged SCADA
data and the WRF’s simulations at the Teesside mast’s locations. Similar to the simulations
at the FINO1 site, the WRF’s shorter-range simulations can capture the prevalent wind
directions of SW, similar to the observation. The distribution of lower wind speed (under
5 m/s) is higher for the observation.

4.4 Validation
Figure 4.6 shows the Taylor diagram for the WRF’s simulated wind speed versus SCADA’s
observation (for Teesside) and mast’s anemometer (for FINO1). The diagram demonstrates
that the WRF’s performance decreases consistently with the simulation range, with the
best performance at 0-24h. Before the exclusion of the shadow and wake direction, the
simulations for the FINO1 site have a similar performance to that for the Teesside site, with
a correlation of about 86% at the FINO1 and 83% at the Teesside for the range of 0-24h.
However, the variation of the WRF simulation is larger than the observation for the FINO1
site and smaller than the observation for the Teesside site. After excluding the shadow
and wake directions, the simulation at FINO1 performs better than at the Teesside with a
correlation of nearly 90% for the 0-24h range. The variation of the WRF simulation after
the direction exclusion is also closer to, although slightly smaller than the observation.

Figure 4.7 shows the fitted Weibull’s distribution for the two months at Teesside and
FINO1 of the observations and WRF’s simulations. The shape and scale parameters are
provided in Table 4.1. For the Teesside site, the model underestimates the frequency of
the low-speed wind (under 5 m/s) while overestimating the frequency of the high-speed
wind. The peak probability of the wind speed for the SCADA data is about 4 m/s and is
higher for the simulation at about 7 m/s. For the FINO1 site, the wind speed distribution
is closer to the observation. The peak wind speed for the mast’s anemometer is about 6
m/s, which is higher than that for Teesside’s SCADA data. On the other hand, the peak
wind speed of the WRF at the FINO1 is similar to that at the Teesside’s mast location.

Figure 4.8 and Table 4.2 summarize the wind speed errors of the WRF simulation com-
pared with the observation for the 2-month period. Once again, the results show a system-
atic decrease in the model’s performance with the longer simulation range. The longer the
range is, the higher the MAE and RMSE are. For both sites, there is a positive wind speed
Mean Bias Error (MBE). With the shadow and the wake directions excluded, the results
for the FINO1 perform better than the Teesside. The best performance is for the range
0-24h at the FINO1 with a bias MBE of 0.64 m/s, MAE of 1.42, and RMSE of 1.85 m/s.
While there is a certain bias, which may result from the fact that the WRF simulation does
not take into account the wake effects of the surrounding wind farms (Fig. 3.7), the MAE
and RMSE are quite close to those between the mast’s anemometer and the LiDAR data
(Table 3.2), which are 1.01 and 1.54 m/s respectively.
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Figure 4.5: Windroses for the two-month period of Teesside’s SCADA observation at 80
m vs. WRF’s simulations
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Figure 4.6: Taylor diagram for WRF’s wind speed simulations vs. Teesside’s SCADA data
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Figure 4.7: Fitted Weibull’s distribution for the two-month period at Teesside and FINO1
of observations and WRF’s simulations.
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Case Shape param. k Scale param. λ

For Teesside at 90 m
SCADA 1.84 6.84
0-24h 2.74 8.17
6-30h 2.70 8.23
12-36h 2.75 8.33
18-42h 2.68 8.35
24-48h 2.64 8.38
48-168h 2.46 8.06

For FINO1 at 90 m
Mast 2.03 8.32
0-24h 2.28 9.02
6-30h 2.37 9.20
12-36h 2.36 9.37
18-42h 2.36 9.46
24-48h 2.34 9.47
48-168h 2.09 9.22

Table 4.1: Fitted Weibull parameters for the two-month simulations at Teesside and FINO1
vs the observations.
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Figure 4.8: Box plots for the wind speed errors for the 2-month simulations at Teesside and
FINO1. The data at FINO1 has the shadow and wake directions excluded.
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Table 4.2: Wind speed errors for the 2-month simulations.
- 0-24h 6-30h 12-36h 18-42h 24-48h 48-168h

For Teesside at 80 m
MBE 1.16 1.21 1.30 1.31 1.33 1.04
MAE 1.73 1.78 1.87 1.95 2.00 2.08
RMSE 2.20 2.29 2.40 2.53 2.56 2.67

For FINO1 with shadow/wake directions excluded
MBE 0.64 0.81 0.97 1.05 1.06 0.82
MAE 1.42 1.56 1.76 1.87 1.91 2.25
RMSE 1.85 2.06 2.30 2.44 2.48 3.13

4.5 Discussion
We have carried out the mesoscale simulations using the WRF with the resolution of 9
km for a large region containing the North Sea (Fig. 3.7) with different simulation range
from 1 day (0–24h) to a week (48–168h). The purpose of the simulation is to examine the
ability of the mesoscales model to simulate the wind speed at the hub height of the wind
turbines and the effect of the simulation range on the model’s performance. We validate
the simulation results with the observations of the Teesside and FINO1 meteorological mast
at the hub height of the wind turbines located nearby.

The WRF model performs the best with the shortest range simulation of 0–24h as the
errors increase systematically with the longer range. The performance of the WRF for the
FINO1 site is better once we exclude the wind directions that are affected by the shadow
effect of the mast pole (directions between 285◦ and 285◦, i.e. the north-westerly wind)
and the wake effect from the nearby turbines (directions between 70◦ and 110◦, i.e. the
easterly wind). The simulation for the Teesside site performs worse in our experiments,
which may result from the fact that the wind farm locates close to the coast (Fig. 3.1),
where the processes influenced by the topography and land-sea contrast might be more
difficult to capture.

For the FINO1, even after the exclusion of the shadow effect from the mast and the wake
effect from turbines to the east, the simulated wind speed still has a positive bias of nearly
1 m/s (Table 4.2), which may be attributed to the wake effect of the wind farm nearby.
These differences can be alleviated by the inclusion of a wind farm parameterization, for
example, the Fitch’s scheme to the WRF. However, the direct wake effect of the individual
turbines, as we will demonstrate in another section of this report, cannot be captured by
the mesoscale WRF, even with the wind farm parameterization, which takes into account
the wake effect of multiple wind turbines collectively. For this reason, the use of smaller-
scale LES models with an appropriate actuator disc model to account for the wake effect
of individual wind turbines is desirable.

5 WRF case studies for transient events
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5.1 During an OCC event
5.1.1 Background

Open Cellular Convection (OCC) is a special type of mesoscale shallow convection that
often occurs when a cold air mass moves over a warmer sea surface during a cold air
outbreak event (Agee et al., 1973; Atkinson and Wu Zhang, 1996). The OCC can cause
high-frequency fluctuations in the wind speed that greatly affect the operation of offshore
wind farms (Atkinson and Wu Zhang, 1996; Göçmen et al., 2020). These high-frequency
fluctuations have predictable timescales of only a few hours or less (Lorenz, 1969; Archer
et al., 2017) and thus is a challenge for mesoscale models, where the sub-hour fluctua-
tions are considered stochastic and the exact time and location of the convective cells are
unpredictable. On another hand, the OCC is also associated with large-scale conditions,
a mesoscale model is expected to be able to simulate the time-varying, or so-called the
deterministic aspect, as well as the statistics of stochastic aspects of the OCC. Thus, for
model validation, we propose the decomposition of the original time series data into the
deterministic and stochastic components.

To resolve the small-scale convection as the OCC, a fine resolution of a few kilometers is
usually needed. In such cases, the cumulus parameterization is usually turned off. Then, the
choice of physics parameterizations, especially the boundary layer and microphysics schemes
can greatly affect the accuracy of the simulation. There were a number of OCC studies
using the WRF models (e.g. Vincent et al., 2012; Göçmen et al., 2020; Imberger et al.,
2021). However, to our knowledge, no studies were done to investigate the sensitivity of
the parameterizations for the OCC specifically. Several studies investigated the sensitivity
of planetary boundary layer parameterizations for the wind prediction in the boundary layer
in general (Draxl et al., 2014; Carvalho et al., 2014; Banks et al., 2016; Avolio et al.,
2017; Gunwani and Mohan, 2017; De Lange et al., 2021) and there is no agreement on the
optimal configuration in general.

In this section, we carried out a parameter sweep experiment of physics parameterization
using the WRF model during an OCC event. We investigate how the wind speed in the
boundary layer changes with model resolutions and physics options. Starting from a control
experiment, we designed three series of experiments, each varying the parameterizations of
one group out of three: the planetary boundary layer, microphysics, and radiation. The
sensitivity experiment is carried out for the Teesside region because it has less affected by
the surrounding wind parks compared to the FINO1. We then validate the results against
Teesside’s meteorological mast data and derive the optimal configuration by combining the
best option in each category.

We simulate the wind field for two days from 00Z November 21 to 00Z November 23,
2015. During the period, an OCC event was associated with the cold air mass behind
an extratropical cyclone and passed through the Teesside region. The time series of wind
speeds at Teeside’s mast location was extracted at every model time step. The WRF uses
three nested domains (Fig. 3.7a), with the resolution of 9 km, 3 km, 1 km and time steps
of 30 seconds, 10 seconds, and 10/3 seconds for D01, D03, and D03 respectively.
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Table 5.1: Sensitivity experiments: The options denoted by “-” means they are the same
as the CTRL experiment. The references for all the options can be found in https://www2.
mmm.ucar.edu/wrf/users/physics/phys references.html
.

Experiment PBL Surf. layer Microphysics Shortwave rad. Longwave rad.
CTRL MYNN2 MYNN Thompson RRTMG RRTMG
bl01 YSU MM5 - - -
bl02 MYJ Eta - - -
bl04 QNSE QNSE - - -
bl06 MYNN3 MYNN - - -
bl07 ACM2 Pleim–Xiu - - -
bl08 BouLac MM5 - - -
bl09 UW Eta - - -
bl10 TEMF TEMF - - -
mp02 - - Lin - -
mp04 - - WSM5 - -
mp06 - - WSM6 - -
mp07 - - Goddard - -
mp10 - - Morrison - -
mp13 - - SBU–YLin - -
mp14 - - WDM5 - -
mp16 - - WDM6 - -
ra01 - - - Dudhia RRTM
ra02 - - - Goddard RRTM
ra03 - - - CAM CAM
ra05 - - - New Goddard New Goddard
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Figure 5.1: The root mean square errors of the mean (a), the correlation coefficient of
the mean (b), and standard deviation of the fluctuation (c) of the 10-min averaged wind
speed at 50 m for different experiments against the Teesside’s mast anemometer.

5.1.2 Experiment design

The simulation results depend on the combinations of the physics parameterizations: the
Planetary Boundary Layer (PBL), the surface layer, the microphysics, the cumulus con-
vection, the short wave radiation, and the longwave radiation. It is impractical to test all
the combinations as the number is very large. In our study, we reduced the number of
combinations by starting from a control experiment(CTRL, Table 3.3), then changing the
parameters in each of the three parameterization groups: boundary layer, microphysics, and
radiation (Table 5.1). In the first group, eight experiments are designed with several PBL
and surface schemes together. There are also eight experiments that vary the microphysics
schemes and four that vary the radiation schemes (shortwave and longwave). As discussed,
the cumulus parameterization can be turned off for the 3-km and 1-km domains, and use
the Tiedtke cumulus scheme (Zhang et al., 2011) for the 9-km grid, which is the same for all
the sensitivity experiments. We use the Unified Noah Land Surface Model (Mukul Tewari
et al., 2004) for the land surface parameterization. The wind farm parameterization is
not used because it can only be used together with the MYNN planetary boundary layer
schemes.
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Table 5.2: Two derived combinations of physics configurations

Experiment Boundary layer Surface layer Microphysics Shortwave rad. Longwave rad.
com1 BouLac MM5 SBU–YLin Dudhia RRTM
com2 YSU MM5 Morrison Dudhia RRTM

5.1.3 Result

The RMSE and correlation of the deterministic component, as well as the standard variation
of the stochastic component, are shown in Fig. 5.1. Firstly, we found that higher resolution
does not lead to a better performance in terms of the deterministic aspects. For most
cases, the 3-km resolution performs the worst with the highest RMSE and lowest correlation
coefficient, the 9-km domain performs slightly better than the 1-km domain (Fig. 5.1a,b).

From the stochastic perspective, the variation of the fluctuation is highly sensitive to
the resolution. The variation of the stochastic component is higher with smaller grid sizes
(Fig. 5.1c). The 9-km domain can captures only about half of the observation’s variation,
while the variation of the 1-km resolution simulation is similar to the observed for most
experiments.

In an attempt to improve the simulation result, we first carry out a simple ensemble
mean (named ens in Fig. 5.1) by taking an average of the wind speed of all experiments.
However, the result is disappointing: the statistics for the deterministic component are not
the best compared to individual experiments; on the other hand, the stochastic fluctuation
is heavily damped (Fig. 5.1c).

Two additional experiments in Fig 5.1, com1 and com2 (Table 5.2), are the combina-
tions derived from choosing the options that perform well in each parameterization group.
com1 is the combination of experiments bl08 (BouLac boundary layer), mp13 (SBU-YLIN
microphysics), and ra01 (Dudhia and RRTM radiations). Each option is the best-in-group
for the deterministic component. However, bl08 and mp13 have the lowest (worst) stan-
dard deviation of the stochastic component. Thus, the com2 is chosen as a compromise
by changing the boundary layer and physics option to bl01 (YSU) and mp10 (Morrison),
which are the second-best-in-group, and the stochastic standard deviation is more realistic.

Experiment com1 performs better than all other experiments for the deterministic com-
ponent with the lowest RMSE and highest correlation at the 9-km and 1-km resolutions,
which means the combination has an additive effect on the individual experiments. How-
ever, the stochastic variation is significantly damped and is only slightly larger than the
ensemble. On the other hand, com2 also performs well for the deterministic component
similar to com1. However, the fluctuation level of com2 is higher and is closer to the
observation, especially for the 1-km resolution.

The 10-min averaged time series of wind speed at the height of 50 m (Fig. 5.2) show
that experiments ctrl, ens, com1, and com performs much better than the forcing ERA5
reanalysis data, which heavily underestimates the wind speed. For the control experiment,
the wind speed is underestimated at around 06Z on Nov 21 and overestimated around 00Z
on Nov 22 by about 5 m/s for all resolutions. The ensemble means, ens, does not improve
the performance compared to the ctrl and most of the fluctuation is heavily removed.
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Figure 5.2: Time series of 50-m, 10-min wind speed of the Teesside mast’s observation
versus WRF simulations of experiments ctrl, ens, com1 and com2 at three resolutions. The
ERA5 reanalysis data is also shown hourly.

Experiment com1 performs the best for the deterministic component, especially for the
coarse resolution of 9 kilometers. However, it slightly underestimates the wind speed for
the first day for the 3-km and 1-km grids. The high-frequency variation is also significantly
reduced across the resolutions during the first day, which explains the low standard deviation
in Fig. 5.1. However, com1 can still capture some of the stochastic variations on the second
day, when the OCC passed through the Teesside met mast.

Experiment com2 also performs well for the deterministic component similar to com1,
despite the fact the two experiments use different PBL schemes. Com2 performs better
than com1 for the first day but slightly underestimates the wind speed near the end of the
integration period. Unlike com1, the fluctuation level of com1 is closer to the observation.

The snapshot of the vertical velocity at the Teesside turbines’ hub height (80 m) shows
that all experiments cannot resolve the OCC structure and 9 km resolution (Fig. 5.3).
The OCC structure starts to reveal from 3 km with upward motions at the edges and the
downward motion in the center of the cells. The power spectral density shows that most
of the experiments, except com1, have a realistic spatial scale ranging from 20 km to 70
km, compared with 50 km of the observation (Fig. 5.4.a). The com1 experiment has the
smallest spatial scale, especially at the 1-km resolution as the spatial scale is less than
one-fifth of the observation. Higher resolution can also capture fluctuation with higher
frequencies as revealed by the temporal power density spectral of the wind speed (Fig.
5.4.b). The variation for CTRL and com2 peaks ranges from 2 to 3 hours, while the peak
period of com1 is less than 1 hour.
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Figure 5.3: Snapshots at 12Z November 22, 2015 of vertical velocity at 80 m (Teesside
turbine’s hub height) in cm s−1 for experiments ctrl, com1, and com2. All plots are zoomed
to the inner most domain (d03).
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Figure 5.4: (a) Power spectrum of 80-
m vertical velocity for experiments ctrl,
com1, and com2; (b) Power spectrum
of 10-min wind speed fluctuations.

5.1.4 Discussion

This study investigates the ability of a mesoscale numerical model to simulate an OCC
event that passed through Teesside’s wind park in November 2015. We use the WRF model
with three nested domains to downscale the ERA5 reanalysis to a 1-km resolution. Three
series of parameter-sweep sensitivity experiments are tested to select optimal configurations
(Table 2) for the OCC event. To validate the model, we decompose the time series into
deterministic and stochastic components. The results show that stochastic fluctuation
is more sensitive to the resolution: higher resolution results in higher and more realistic
fluctuation. The WRF starts to resolve the OCC structure from the resolution of 3 km and
the spatial scale of the simulated OCC also strongly depends on the choices of the physics
parameterization.

The MYNN schemes are popularly used in wind energy applications, partly because they
can be used together with wind farm parameterization. However, in this case, study, both
MYNN2, and MYNN3 do not perform well. We obtained two optimal configurations for
the specific case. The first configuration performs the best in the deterministic aspect,
however, the stochastic fluctuation is heavily damped. The second configuration performs
well in the stochastic sense and is just slightly worse than the first configuration in the
deterministic sense.

This study has an obvious caveat with only one case study, and the inaccuracy of the
initial conditions and the observations are not taken into account. However, we demon-
strated that an optimal configuration can be obtained by carrying out sensitivity studies
of different parameters independently and by the combination of the well-performed ex-
periments in each category. Interestingly, the combination can outperform all individual
ones in an additive manner. To achieve a reliable general optimal configuration, further
studies are needed by using a larger number of cases, data assimilation, and other sources
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of observation.

5.2 During a low-level jet event
5.2.1 Background

Low-level jet (LLJ) is the phenomenon where there is a relatively strong wind speed peak
occurs within 2-3 km from the surface. In wind energy applications, LLJ noses within the
boundary layer are of particular interest because the high wind speed and the fact that the
LLJ-induced wind shear can affect the operation of the wind turbines.

The mechanism for the LLJ can be categorized into two groups: (a) Inertia Oscillations
(IOs) and (b) baroclinicity. The IO mechanism for the LLJ is clearly explained by Blackadar
(1957), where the nocturnal inversion leads to a decoupling of the atmosphere to the surface
and reduces the apparent friction. The imbalance of the Coriolis and pressure gradient forces
leads to an inertial oscillation with a period of 2π/f , where f is the Coriolis. The original
sub-geostrophic wind later becomes super-geotropic wind after a duration of less than half
of the inertial period, which is about 8.5 h for the latitude of 45◦N. The surface decoupling
occurs where a thermal inversion exists, which does not limit to the nocturnal effect. It
also occurs in some other situations, for example when the wind flows into a colder surface,
with a less roughness length, or in a warm front system.

The baroclinicity mechanism is described by Holton (1967), where the LLJ occurs be-
cause of the temperature horizontal difference over sloping terrain. The direction of this
temperature gradient alternates with the diurnal cycles and the diurnal oscillations provide
energy for the LLJ. Burk and Thompson (1996) described a coastal LLJ that associates
the baroclinicity along the coast and a capped inversion of the marine ABL. In any case, a
strong temperature gradient zone near the surface results in a steep slope of the isobaric
surfaces. Due to the thermal wind relation that leads to a high geostrophic wind speed
maximum at the surface and decreases with height. The LLJ is a result of this decrease of
geostrophic wind height above the LLJ, and the decrease of wind due to the friction below
the LJJ. The horizontal temperature gradient can be formed from the differential heating
of sloping topography or land-sea distribution, or when a cyclone-induced cold front swept
through. Because the pure baroclinicity LLJ is weaker than the geostrophic wind, while the
IO LLJ is stronger than the geostrophic wind, one can expect a more frequent occurrence
of the IO type.

In reality, the LJJ can occur as a result of the combination of both mechanisms. The
strong IO LLJ also requires a relatively strong geostrophic wind in the first place, thus the
baroclinic effect also plays as a conditioning factor that builds up the potential environment
for the IO LLJ. For the North Sea regions, Wagner et al. (2019) pointed out three mech-
anisms: a) Baroclinicity due to the difference of land-sea heating; b) Baroclinicity dues to
fronts; and c) Inertial oscillations from the frictional decoupling at the coastline and on-land
ABL stabilization.

5.2.2 A case study for the FINO1 region

We revisit an LLJ event from 13 Aug. 2015 to 12Z, 14 Aug. 2015, previously investigated
by Wagner et al. (2019), which features a distinct jet profile and was well covered by the
measurements. We perform the WRF simulation with 3 nested domains from 9 km to 1
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Figure 5.5: Time series of wind speed at the jet core height 300 m (a) and turbine hub
height 90 m (b) of the observation (LiDAR and cup anemometer), NORA3, and three
WRF’s simulations from 13 Aug 2015 to 12Z, 13 Aug 2015.

km (Fig. 3.7b). Besides the control experiment CTRL (Table 3.3), we simulate the event
with the same WRF’s configuration with the Fitch’s wind farm parameterization turned on
- experiment fitch. We also performed the com1 configuration (Table 5.2), which is the
optimal combination derived from the OCC sensitivity experiments.

Figure 5.5 shows the wind speed time series at the 90 m and 300 m (near the LJJ core)
form WRF simulation versus the observation and the NORA3 data. For the 300 m level
(Fig. 5.5a), all the WRF simulations capture closely the LiDAR data for the first 24 h until
00Z, 14 Aug. 2015. Interestingly, from 18Z, 12 Aug. 2015. the WRF experiments CTRL
and Fitch perform better than NORA3 data, which is similar to the com1 experiment. After
that, there is a sudden decrease in the wind speed for the CTRL and Fitch, in contrast to
the gradual decrease in LiDAR data and an even smaller change for NORA3 and com1.
With the wind farm effect presented, the Fitch experiment is slightly weaker than the CTRL
throughout the integration period.

For the lower level at 90 m (Fig. 5.5a), the differences between the observations (mast’s
anemometer and LiDAR) and the mesoscale are more notable. Although the models capture
the general trend of the wind speed for the first 18h, the fluctuation level of the observation
is higher with some short periods of speed reduction. The most striking difference started
from 18Z, 13 Aug. 2015, where the observed wind speed quickly decreases about 7 m/s
over the 9 hours, while the WRF models and NORA3 data wind speed stay unchanged.
Compared to the CTRL experiment, the Fitch experiment has a wind reduction of about 2
m/s, larger than that at higher levels.

As evident in Fig. 5.6a, the strong LLJ with a wind speed over 15 m/s occurs between
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Figure 5.6: Time-height section of the LiDAR data (a,c), NORA3 data (e), and three
WRF’s simulations from 13 Aug 2015 to 12Z, 13 Aug 2015: ctrl (b), fitch (d), com1 (f).
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Figure 5.7: Hodographs at two timeslices at (a) 15Z, 13 Aug and (b) 00Z, 14 Aug 2015
for LiDAR data and WRF simulations. The thin arrows are wind vectors at 90m and the
thick arrows are wind vectors at 300m

12Z, 13 Aug. and 06Z, 14 Aug. 2015, with the strongest intensity of about 20 m/s at the
midnight 00Z, 14 Aug. 2015. The jet core lies between 200 to 400 m. In the simulation
by Wagner et al. (2019), the simulated LLJ intensity is underestimated (their Fig. 17),
which agrees with our com1 experiment (Fig. 5.6f). However, for our CTRL and Fitch
experiments, the LLJ intensity is slightly stronger than that in the LiDAR data.

Above 200 m and around 06Z, 14 Aug., there is a large wind speed reduction present
in the LiDAR. The LLJ weakens with the core height coming lower down to 200 m, then
the LLJ terminates as there is no decrease of the wind speed with height. Both CTRL
and Fitch can capture this evolution while com1 and NORA3 as well as the simulation by
Wagner et al. (2019), cannot.

The hodographs (Fig. 5.7) show that at the onset of the LLJ in the afternoon, 15Z 13
Aug., the WRF simulations can capture well both the wind speed and direction with height,
as the observed wind spiral is close to the models. However, the spirals become diverse
at the peaked-intensity time for the LLJ at 00Z, 14 Aug. with an overestimation of the
LLJ intensity for CTRL and Fitch, and an underestimation for com1. At the hub-height
levels, all the simulations overestimate over 5 m/s or 100% to that of the LiDAR data.
The hub-height WRF’s wind direction is also slightly rotated clockwise compared to the
observation.

The wind speed reduction from 18Z, 13 Aug., and 06Z, 14 Aug. in the LiDAR data
(Fig. 5.6a) occurs rather uniformly in a thin layer of about 200 m from the surface. This
suggests the wake effect of the wind turbines nearby. The wake effect is also evident in the
hodograph at 00Z 14 Aug (Fig. 5.7b), the observed wind below 90 m is easterly, which
is the direction to the nearest wind turbine of the Alpha Ventus wind farm (Fig. 3.1b).
While the wake effect is represented using the Wind-Farm Parameterization (WFP) in the
Fitch experiment, the WRF cannot resolve this strong wind speed reduction over time and
space. The reason is that the WFP in the WRF model considers a collective effect of
multiple turbines within a grid cell. The distance from the FINO1 platform to the nearest
wind turbines is about 400 m, which is smaller than the finest grid size of D03 of 1 km.
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Thus, the wake effect can be presented throughout the integration period with a weaker
magnitude and regardless of the wind direction (Fig. 5.6d and Fig. 5.5a).

5.2.3 Mechanism of the low-level jet event

Figure 5.8: Low-level jet core speed and 300m horizontal wind vectors (a,c), core height
(b,d) for 12Z, 13 Aug. (top) and 00Z, 14 Aug. 2015 (bottom) detected from the 9-km
domain of the CTRL simulation. The plots are overlaid with smoothed sea level pressure.

Because the CTRL case can capture most of the features of the observed LLJ, we consider
the WRF dynamics is reliable in this case and three-dimension WRF outputs can be used to
understand the mechanism of the LJJ. Figure 5.8 shows the horizontal distribution of the
LLJ core speed and height at the onset time (at 12Z, 13 Aug., Fig. 5.8a–b) and maximum-
intensity time (00Z 14 Aug., Fig. 5.8c–d) for the 9-km domain WRF’s CTRL experiment.
The LLJ is detected using the detection method of Wagner et al. (2019) where under 1500
m, there must be a wind speed maximum that is at least 2 m/s and 25% greater than the
maximum above it. This is a relatively relaxed condition where the LJJ intensity can be as
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low as 2.25 m/s. To focus on the stronger LLJ event, we added another criterion, where
the wind speed maximum must be at least 10 m/s.

At the onset time, the LLJ occurs mainly offshore in the southern part of the North
Sea, starts from the southern part of an anti-cyclone located over southern Sweden, and
extends to the northwest part of a weak cyclone located over the coast of France. The
LLJ intensity over FINO1 is just over 10 m/s. At the maximum intensity phase, the LLJ
originates further from the land and blows towards the Southern North Sea. The LLJ core
speed at FINO1 increases nearly two folds in 12h to over 20 m/s. The cyclone elongated
and splits into two centers with a new one locates in the south of England. To the east of
the combined centers, there exists a narrow northerly LLJ with strong intensity of over 20
m/s. In both times, the height of the LLJ over the south of the North Sea ranges from 200
to 400 m, whereas the LLJ to the east of the cyclones has a higher level of about 500 m.

Figure 5.9: Equivalent potential temperature (shaded) and atmospheric pressure (con-
tours) at 300 m (left) and 1500 m (right). The solid red, green, purple curves are averaged
surface front lines for warm, cold and occluded fronts respectively. The dashed black line
A–B is used for the cross section in Fig. 5.10.

Figure 5.9 shows the equivalent potential temperature, which is useful for identifying air
masses, on 300 m and 1500 m levels for the two time-slices. During this period, the cyclone
evolves into the occlusion phase, the center moves a little southward, while the warm front
moves slightly closer to the FINO1 platform. The position of the LLJ to the east of the
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cyclone suggests that this is a sting jet. The LLJ over the southern North Sea, on the other
hand, locates in front of the surface warm front associated with the cyclone. Notice that
at 00Z, 14 Aug. 2015, at the level of 300 m, the warm front locates to the south of the
FINO1 platform, but to the north of FINO1 at the level of 1500 m. This suggests a gentle
slope of the front surface, which is typical for warm fronts.

In both time slices, the isobaric lines over FINO1 are denser on the 300-m level compared
to the 1500-m level, this implies a decrease of geostrophic wind with height, consistent with
the westerly thermal wind that is opposite the easterly geostrophic wind. The decrease of
the geostrophic wind with height suggests the baroclinic mechanism for the LLJ, where the
wind speed decreases below the LLJ core due to the surface friction.

(a) (b) (c)

(d) (e) (f)

Figure 5.10: Meridional-Vertical cross section through the FINO1 mast (line A–B in Fig.5.9
) of zonal wind (left, geostropic zonal wind (midle), and potential temperature (right)
for 12Z, 13 Aug. (top) and 00Z, 14 Aug. 2015 (bottom). The zonal wind plots are
overlayed with the isolines of 12 m/s (dashed) and 15 m/s (solid). The equivalent potential
temperature plots are overlayed with meridional-vertical wind vectors.

To have further looks at the LLJ over the FINO1, we compared the south-north cross-
section of zonal wind (U-component) with the geostrophic wind (Fig. 5.10). At noon 12Z,
13 Aug. 2015, the frontal zone is not well defined (i.e. Fig. 5.10c)). The geostrophic wind
shows two maxima which are the largest on the surface: one over the FINO1 platform and
another over land about 200 km to the south. These two maxima are associated with the
meridional temperature gradients, which in turn may result from the difference in radiative
heating of sloped terrain and land-sea contrast.

Over the first geostrophic wind maximum, the actual wind does not resemble the LLJ
structure with a weaker wind speed and smaller vertical shear compared to the geostrophic
wind (Fig. 5.10a,b). This can be attributed to the convective, well-mixing boundary layer,
which is associated with the heating of the land surface during the day. Over the sea, the
neutral boundary condition leads to a decrease in the geostrophic wind below the LJJ jet
level, resulting in a weak LLJ over 12 m/s right above the FINO1 platform. Since the
location of the LLJ co-locates with the geostrophic wind maximum but the intensity is
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weaker, we conclude that this LLJ is kick-started by the baroclinic mechanism from the
differential land-sea heating during the day plus the cyclone-induced warm front.

At the maximum intensity phase (Figs. 5.10e–g)), which occurs at midnight, we do not
observe an increase in the geostrophic U-wind speed, however, the actual U-wind speed of
the LLJ core is over 20 m/s, which is near twice the geostrophic wind speed. The LLJ
has a width of over 400 km and locates at a height of around 300 m. Thus we conclude
that the main mechanism for the LLJ at this time is the Inertial Oscillation (IO), which
associates with the fact that the warm front zone is sloped towards the north and leads to a
stable boundary layer that acts to decrease the surface friction. As the LLJ extends over a
large region over both land and sea, the main reason for the decoupling is not the radiative
cooling of the surface that is often discussed for nocturnal LLJ, but rather the warm front-
induced stabilization. However, the radiative heating over land during the daytime does
produce an unstable PBL that disrupts the LLJ on land. A consistent increase of the LLJ
core speed since noon (Fig. 5.5a), instead of since the sunset, supports this assessment.

Our analysis agrees with Wagner et al. (2019), where they attribute the LLJ to frictional
decoupling (i.e. IO) and the baroclinicity due to land-sea contrast and warm front passage.
However, they distinguished the LLJ on land due to the IO mechanism and at the coastline
due to either IO or baroclinity. In our view, the LLJ development over the FINO1 is one
entity that is first initiated near the coastline by the baroclinicity from both the land-sea
contrast. Later the main mechanism for the LLJ both over land and sea is the IO mechanism
with the warm front-induced decoupling effect.

5.2.4 Effect of nudging and data assimilation

The ability of nudging to capture the variability of flow fields in accordance with observations
(here from LiDAR) depends highly on the LiDAR data availability and its quality. Several
LiDAR data in time and space do not meet the expected quality and will not participate in
the assimilation (such as quality constraints in terms of spatiotemporal differences between
the model simulations and LiDAR measurements).

We know that the LLJ events are observed mostly under a stable atmosphere and Fig.
5.11 provides an overview of winds (Fig. 5.11a), stability (Fig. 5.11b), and turbulence
intensity (Fig. 5.11c) to characterize the small-scale property during LLJ at 15 m height
in August 2015. Using high frequency sonic data (i.e. with sampling frequency of 25 Hz),
the Monin–Obukhov stability parameter L, is calculated as follows

L = − u3
∗aθ̄v

κg(w′θ′
v)

, (5.1)

where w′ is the vertical velocity fluctuation, θ̄v denotes the mean virtual potential tem-
perature, and w′θ′

v is the flux of the virtual temperature. κ and g are the von Kármán
constant and the gravitational acceleration, respectively. The overbar indicates a mean and
the prime denotes the fluctuations. The friction velocity in the above equation is given as

u∗a = (u′w′2 + v′w′2)1/4, (5.2)

where u′ and w′ are horizontal and vertical wind fluctuations, respectively.
During the study period (blue coloured area), the wind speed declines from 15 m/s

(at the beginning of the period) to 6 m/s (the occurrence of the first LLJ event), see Fig.
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Figure 5.11: The time-evolution of (a) wind speed (black line) and wind direction (red
markers); (b) stability parameter L. Stable and unstable conditions are marked by blue and
orange colors; and (c) Turbulence Intensity (TI).
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Figure 5.12: (a) Time-height plots of measured and modeled horizontal wind speeds at
FINO1 over the study period of August 13–15 2015: (a) the LiDAR measurement of wind
speed overlaid with the available and qualified data for the observation nudging in time and
space (the dotted black); (b) WRF without Observation nudging Analysis (OA); and (c)
WRF with OA. The horizontal green lines represent heights (90 m, 180 m, and 400 m) that
we conduct detailed analyses in the next figures.
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5.11a. Unstable conditions frequently occur during August 2015, but the stable atmospheric
condition is the most frequent condition during this time (Fig. 5.11b). The TI is large before
the first LLJ event and reaches approximately 20%, then is suppressed during the LLJ stable
event (Fig. 5.11c).

Figure 5.12a shows the 10-min wind speed of LiDAR measurements at in time and
altitudes (dotted black markers). Note that these data points have passed the required
quality criteria of the observation nudging before being used in the WRFDA system. The
LLJ core is observed on 13 August starting at 14:20 UTC with an approximate jet core
at 290 m. This event persists for a few hours and is followed by another weak LLJ at 14
August around 08:00 UTC (during the first event, the LiDAR coverage is higher than 1.2
km, and there are, however, missing data points above 800 m for the second event).

Figure 5.12b shows the WRF simulation of wind speed at the FINO1 location for the
CTRL configuration combined with the wind farm effects for the parent domain (i.e. D01
with a horizontal resolution of 9 km). In the outer domain, there are large land regions in the
southern of FINO1 so that the development of LLJs will not fail due to the possibility of the
development of stable atmospheric stability conditions over the study area. The maximum
wind speed is predicted between 200 m and 400 m. However, the WRF overpredicts the
wind speeds during both LLJ events (the jet core for the first event is expanded over a longer
duration relative to what is expected from the measurement as shown in Fig. 5.12a). The
simulated jet nose level is higher than the observation and the model does not simulate
properly the weakening periods above 400 m between the two events.

The wind speed prediction from the observation nudging is shown in Fig. 5.12c, based
on the CTRL configuration combined with the farm effects. The overall agreement with
measurements is greatly improved by employing the OA. The model predicts very similar
variation before/during/after the LLJ event and the remained discrepancies are explained
by the fact that a limited number of measurement points in time and space have been used
for the nudging (i.e. the black markers in Fig. 5.12a).

Figure 5.13 compares the time-height wind direction at FINO1 of the LiDAR measure-
ment versus the WRF simulations. The mean wind direction at low altitudes below 100
m is mainly southerly (namely before 14 August at 14:00 UTC) that turns then gradually
towards the southwesterly wind. For higher altitudes, the flow direction is southeasterly
before LLJ and southwesterly during LLJ (the intensity, the strength, and duration of such
transient event might be explained by the seasonal variability of the atmospheric flow which,
along with its interaction with land, is one of the responsible factors in the generation of
this event).

While both the nudged and unnudged simulations show an almost good agreement
with the measurement, the unnudged illustrate a larger error at high altitudes, particularly
after the first LLJ (around 14 August at 06:00 UTC) where we observe almost a constant
large bias in the wind direction at roughly all heights. Although the observation nudging
substantially reduces the wind direction bias and improves statistically the wind prediction
(not shown), the accuracy of the model prediction may decline at higher altitudes due to
the lack of LiDAR data availability.

Figure 5.14 shows time-series comparisons between simulated and measured wind speeds
at three heights (90 m, 180 m, and 400 m respectively from top to bottom). Before the
LLJ event, all simulated results are in good agreement with measurements (the unnudged
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Figure 5.13: (a) Time-height plots of measured and modeled wind directions at FINO1
over the study period between August 13–15 2015: (a) LiDAR measurement (the dotted
markers show the available and qualified data to be used in the observation nudging); (b)
WRF without OA; and (c) WRF with OA. The horizontal green lines represent the heights
(90 m, 180 m, and 400 m) that we conduct detailed analyses in coming figures.
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Figure 5.14: (a) Time series of measurements (black lines), nudged (red curves) and
unnudged (blue lines) WRF simulations on parent domain (i.e. D01 with 9 km horizontal
resolution) for the closest location to the FINO1 at different heights: (a) 90 m; (b) 180 m;
and (c) 400 m. The coloured areas in this figure are study periods being analyzed in the
next figure.
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simulation with a slightly better match). During the first LLJ, the largest error is found
by the unnudged simulation at the level height of 90 m. The observation nudging could
capture fairly well the variation in the wind speed at 180 m, but its performance is low
when compared with other heights.

Note that the altitude between 180 m and 300 m is where the LLJ core resides and
implementation of additional measurements may improve the predictive skills of the nudged
experiment. The error of the CTRL in low altitudes, as described in the previous section,
is due to the wake effects from the turbines to the east of FINO1. Thus, the nudging
mechanism simply adjusts the wind toward the observation at the FINO1 location without
taking into account any physical processes. Therefore, we do not expect the current nudging
to improve the wind presentation outside of the FINO1 region.

Figure 5.15: Mean wind speed profiles at the location of FINO1 during the periods
identified by coloured areas in Fig. 5.14. The vertical time-averaged wind profiles: (a)
during the first LLJ event (blue coloured area in Fig. 5.14); and (b) during the second LLJ
(red coloured area in Fig. 5.14).

We select two time periods covering the first and the second LLJs in order to investigate
the accuracy of vertical profiles of two WRF experiments in more detail against the LiDAR
measurements. For the first event in Fig. 5.15a, a clear jet nose is evident when compar-
ing the temporally-averaged WRF profile against measurement. The perfect agreement is
highlighted for the altitudes above 320 m (blue coloured area). The agreement declines
for the lower heights (yellow coloured area) where the error reaches approximately 2 − 3
m/s. For the second event, the nudged mean profile agrees perfectly well with respect to
the measurements almost in all heights (except about 1 m/s bias for the heights below 180
m). The unnudged mean profile overpredicts substantially the wind.

We have detected two intensity classes throughout the study period during (very stable)
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atmospheric near-surface stability conditions (a strong LLJ followed by a weak event of a
different pattern). Figure 5.16 illustrates that southwesterly winds are frequent at different
altitudes, particularly at the heights close to the nose of LLJ. The maximum speed is shown
by the distance from the origin. At 90 m, the maximum speed is frequently observed from
the southwest, and WRF with OA could predict perfectly well (i.e. Fig. 5.16b), while
the unnudged simulation predicts northwesterly winds (Fig. 5.16a). Weak westerly and
southerly winds are observed from the observation nudging (Fig. 5.16b) and unnudged
simulation predicts wind speeds of excess of 6 m/s from the southern sector. At an altitude
of 180 m, the dominant wind direction is from the northwest sector as a result of the jet
intensification and development (partly from persistent weather features over the North
Sea farther North). By a qualitative look, the nudged experiment (Fig. 5.16e) could better
predict winds than the unnudged run (i.e. Fig. 5.16d), if we compare with measurements
(i.e. Fig. 5.16f). The results of both nudged (Fig. 5.16h) and unnudged (Fig. 5.16g) are
equally well in agreement with measurements (i.e. Fig. 5.16i), and both cannot capture the
northeasterly winds (from 90 m that the wind turns from southeasterly to northwesterly).

In Fig. 5.17, we investigate the effects of single-point nudging (with a radius of influence
of 180 km) on the surface wind (i.e. wind at 10 m height). Comparing Figs. 5.17a and
c, it is obvious that the winds close to the measurement location are forced by the largest
changes compared with the unnudged cells. Figures 5.17b and d similarly suggest that the
cells close to the FINO1 experience the largest changes in the wind speed and its horizontal
variation.

5.2.5 Discussion

We revisited an LLJ event over the FINO1 region and examined the associated generation
mechanisms using the mesoscale model WRF. The atmospheric condition is simulated by
downscaling from the ERA5 reanalysis data using three nested domains down to 1 km. The
LLJ is a mesoscale phenomenon that can be simulated well using the WRF, even with the
coarsest resolution of 9km. However, the local wake effect by the wind turbines—which
not only effectively reduce the wind speed under 200 m, but also can modify the weather
condition above—cannot be captured by a mesoscale model, even when the wind farm
parameterization is included.

We have shown that the spatiotemporal prediction of the LLJ nose and its vertical evo-
lution can be significantly improved by the use of appropriate observation nudging settings
together with qualified LiDAR data. However, the number of nudging points, their quality,
and their spatial and temporal availability/distributions may limit the accuracy of the ob-
servation nudging. The nudging method in specific or the data assimilation in general can
only adjust the model to the observation in the vicinity of the available observation points
and cannot improve the physical mechanism. Thus a finer resolution LES model combined
with the actuator disc effect is required to properly simulate the effect.

6 Wind-wave interaction results
Here, we present the results from different WRF wind-wave interaction experiments listed
in Table 3.4. We compare the online and offline wave coupling simulation results with the
wind data from the FINO1 met mast. In section 6.1, the accuracy of simulated wind fields
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Figure 5.16: Wind roses associated with all simulated and measured wind speeds through-
out the study period at heights of 90 m, 180 m, and 400 m.
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Figure 5.17: Two-dimension maps of wind speed at 10 m height from: (a,b) the control
unnudged run at two different times; and (c,d) the observation nudging at two different
times.

66



HIPERWIND 6 WIND-WAVE INTERACTION RESULTS

Table 6.1: Statistical parameters of the observed and simulated wind speeds at FINO1
station for the period of 03− 17 September 2015.

Parameter Observation CTRL Online wave Offline wave (Mis)Alignment com1 wave
Min 1.33 0.21 0.38 0.72 0.95 1.09
Max 18.7 22.28 23.69 23.28 22.61 20.54
Std 3.51 4.09 4.06 4.04 3.73 3.6

Correlation 0.80 0.80 0.76 0.80 0.86
MBA -0.23 -0.61 -0.04 -0.24 0.16
MAE 1.81 1.91 1.97 1.62 1.31
RMSE 2.37 2.41 2.68 2.15 1.74

using five different experiments was assessed by comparing the results against observations
during an alignment period of 03–17 September 2015. Because the numbers of detected
misalignment cases are low in this period, we select another period that contains more
misalignment cases in section 6.2.

6.1 Alignment Period
6.1.1 Validation of wind field

Figure 6.1 shows the time series of observed and simulated wind speeds at the FINO1
station for the period of 03 − 17 September 2015. Because the hub heights of the wind
turbines (in the Alpha Ventus wind park) are approximately 90 m, we analyze the results at
90 m in this section. As can be seen, all wind simulations (speed and direction) are in good
agreement with observations. It is emphasized that we exclude hereafter all winds affected
by the wind shadow zone of the measurement met mast (direction from 285o− 345o). The
gaps in the time series in this figure are then attributed to this shadow zone effect.

Table 6.1 contains the statistical parameters of the observed and simulated wind speeds
for the period of 03 − 17 September 2015. The minimum, maximum, and standard de-
viation of the observed wind speeds are 1.33, 18.7, and 3.51 m/s respectively. The best
simulation results are related to the com1 wave experiment with minimum, maximum, and
standard deviation of 1.09, 20.54, and 43.6 m/s respectively. The com1 wave results show
positive bias suggesting an overestimation of wind speed on average. Other configurations
underestimate the wind speed (with negative biases). The highest correlation and minimum
MAE and RMSE are related to the com1 wave with a correlation of 0.86 and MAE and
RMSE of 1.31 and 1.74, respectively. The CTRL, Online wave, and (Mis)Alignment exper-
iments have the same correlation roughly about 0.80 and the lowest correlation is related
to the Offline wave configuration, with a value of 0.76. After the com1 wave configuration,
(Mis)Alignment is in the second rank based on the statistical parameters listed in the Table
6.1.

Figure 6.2 shows the observed and simulated wind roses. Based on the observed wind
rose, the wind direction for the study period is from the east to the southwest. There are
two predominant directions: the E-SE for the medium wind speed under 12.5 m/s, and the
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Figure 6.1: Time series of wind speed (top panel) and direction (bottom panel) at height
of 90 m for FINO1 station during 03− 17 September 2015.
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Table 6.2: Comparing Weibull distribution parameters of the observation and simulation
results.

Parameter Observation CTRL Online wave Offline wave (Mis)Alignment com1 wave
Shape 3.02 2.48 2.40 2.49 2.73 2.91
Scale 10.74 10.55 10.11 10.77 10.50 10.93

S-SW for the high wind speed over 15 m/s. All model simulations can reproduce these
two predominant wind directions to some extent, although slightly rotated (clockwise or
counterclockwise) compared to the measurements.

To better assess the quality of simulation results, the Weibull distributions are plotted in
Fig. 6.3. It can be seen that the highest frequency of the wind speeds for observation data
is in the range of 9− 10 m/s. The Weibull distributions corresponding to the com1 wave
and the (Mis)Alignment simulations are in better agreement compared to other simulations.
The shapes of the Weibull distribution curves for Online wave, the Offline wave, and the
CTRL runs show a shift to the left, which means they underestimate the highest frequency
of wind speed. The Weibull parameters (shape and scale) are shown in Table 6.2. The
shape and scale parameters of the observed distribution are 2.9916 and 10.3715 respectively,
and the minimum differences (versus observation) are related to the com1 wave simulation.

Figure 6.4 shows a Taylor diagram of the simulated wind speeds from five different
experiments. In this diagram, the radial (along-axis) distance from the origin is assigned to
the standard deviation, and the radial dashed lines correspond to the correlation coefficients,
while the dashed lines represent the RMSE (which is higher when the radius of the sector
becomes larger). In other words, each point in the Taylor diagram simultaneously shows
the standard deviation, correlation coefficient, and RMSE of the simulated time series
against observations. As can be seen in Fig. 6.4, the com1 wave simulation shows better
performance than other experiments, with a higher correlation and lower RMSE.

Figure 6.5 shows changes of the percentiles (for scores from 1% to 99%) of the wind
speed errors at FINO1 station. For the low wind speeds (lower than 4 m/s), most of the
simulations underestimate the wind speed (negative error). For the wind speed between
4 − 7 m/s, most of the simulations show positive bias. When the wind speed is between
7 − 14 m/s, most of the experiments show negative bias, and for wind speeds more than
14 m/s, the errors grow significantly in most of the simulations. The com1 wave results
show, however, the lowest error compared to other experiments.

6.1.2 Wind shear and Veer

Figure 6.6 shows time-height plot of the wind speed at FINO1 station for the period of 03−
17 September 2015. Given that the wind and wave alignment could be observed at higher
wind speeds, during this period, wind speeds over 8 m/s are the most frequently observed
events. On September 6, the simulation results show a high wind speed, but unfortunately,
suitable wind mast data is not available. We alternatively conduct a comparison between
simulation results and NORA3 reanalysis data that shows a very good match on this day.
On September 15, we can also see a high wind speed pattern and all the simulations provide
good performance in producing the wind patterns on this day. In low wind speed conditions,
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Figure 6.2: Wind Rose at FINO1 station; comparison between the observed (top) and the
simulated wind fields during 03− 17 September 2015.

70



HIPERWIND 6 WIND-WAVE INTERACTION RESULTS

0 5 10 15 20 25
Wind speed (m/s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

pr
ob

ab
ilit

y 
(%

)

Observation
CTRL
Online_wave
Offline_wave
(Mis)Alignment
com1_wave
Observation Histogram
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for a duration between 03− 17 September 2015. White areas in wind mast data show the
shadow zones or missing data.

it can also be seen that the simulations have good performance (accuracy) compared to
the observational data.

Figure 6.7 shows the wind roses at three different levels 33 m, 50 m, and 90 m of
the observed and simulated wind fields for the period of 03 − 17 September 2015. The
dominant wind direction from the observed data at a height of 33 m is about 110o which
slightly rotates counterclockwise to 100o with a height of 90 m. All the simulated dominant
wind directions are in reasonable agreement with the observed data with a maximum of
10o differences. But simulated wind fields do not show any rotation with height. It could
be because the differences between the plotted heights are too small, and we don’t have
enough vertical layers below 90 m in the model results.
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Figure 6.7: Wind roses at three different heights from observations and simulated results
for 03− 17 September 2015.
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6.1.3 Roughness length

Figure 6.8 shows the time series of wind speed and roughness length (i.e. ZNT as WRF
variable) for the period of 03− 17 September 2015. As can be seen in this figure, changes
in the roughness length in the CTRL experiment are directly related to the wind speed
variations. But the relation does not hold for other experiments. When wind speed is less
than 10 m/s, the online and offline experiments often show a minimum roughness length.
As wind speed increases, there will be higher waves and the enhanced interaction between
the wind and waves can cause higher roughness length.
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Figure 6.8: Time series of wind speed and roughness length (ZNT) at FINO1 station during
03 − 17 September 2015 for (a) the CTRL; (b) the online wave; (c) the offline wave; (d)
the (Mis)Alignment; and (e) the com1 wave experiments.

6.1.4 Wind energy

In this section, we present simulated wind power results from our different experiments and
compare them with available observations in the FINO1 station. To calculate the wind
power, the power and thrust curves of Adwen AD 5-116 wind turbine (which is installed
close to FINO1 wind mast station) are used. The specifications of the wind turbine are
given in Table 6.3. Mean wind power over the sea is often higher than those over land, and
the com1 wave experiment shows higher mean wind power than other experiments.

Figure 6.11 shows the time series of simulated and observed wind power at FINO1 station
for the period of 03−17 September 2015. Due to the better performance of the com1 wave
configuration at high wind speeds, it can also be seen that the best performance is also
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Figure 6.9: Roughness length versus wind speed for different simulations during 03 − 17
September 2015.

related to the com1 wave experiment. The total extractable wind power from observation
in this period is approximately 4145281 W/m2 and the com1 wave with a difference of
14104 W/m2 shows the smallest difference.

Table 6.3: Specification of wind turbines which are used for the calculations of the wind
power in this study.
Turbine
Name

Hub Height Rotor Diam-
eter

Cut-in speed Cut-out
speed

Rated speed

Adwen AD
5-116

90 m 116 m 4. m/s 25. m/s 12.5 m/s

6.2 Wind-wave misalignment
6.2.1 Validation of wind field

Figures 6.12 and 6.13 show the time series of wind speed and direction for the selected
dates containing the misalignment between the wind and the wave directions (differences
between the wind and wave directions are more than 120o). As illustrated in these figures,
the wind speed is lower in value than in the alignment cases. Wind speed changes from
almost 0 m/s to a maximum value of 8 m/s during 10 − 12 July 2015, and from 0 to
about 15 m/s during 20− 26 July 2015. Previous studies indicate that misalignments are
often found at low wind speeds but there are some studies that reported misalignments
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Figure 6.10: Spatial distribution of the mean wind power (W/m2) at 90 m in the WRF
model domain for the period of 03− 17 September 2015. Blue dots show the locations of
the wind turbines installed in this area and the red dot shows the location of the FINO1
station.
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Figure 6.11: Time series of mean wind power (W/m2) at FINO1 station for the period of
03− 17 September 2015.
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Figure 6.12: Time series of wind speed (top panel) and direction (bottom panel) at the
FINO1 station at height of 90 m for a period between 10− 12 July 2015.

at high wind speeds (Bachynski et al. 2014 ; Li et al. 2015). For July 10 − 12, the
com1 wave experiment performes better compared with the observation, but there are not
many discrepancies among different simulations for 20− 26 July.

Statistical comparison of simulations and observation data during the misalignment cases
is presented in Table 6.4. The minimum, maximum, and standard deviation of the observa-
tional data are 0.3, 16.12, and 3.21, respectively. On average, all simulations underestimate
the wind speed during these periods (with negative biases). The com1 wave shows mini-
mum MBA and MAE and the offline wave shows minimum RMSE. The CTRL and offline
wave simulation show a better correlation compared with other simulations with a correla-
tion of 0.83. In general, there are no significant differences among the simulations during
these periods.

Figure 6.14 shows the wind rose for the misalignment periods. The observed prevailing
wind direction is from west to southwest. Most of the experiments show a predominant
wind direction from the west to the northwest except for the com1 wave experiment which
shows a good agreement with respect to the observation.

Weibull distributions of observation and simulations at the FINO1 station for the mis-
alignment periods are shown in Fig. 6.15. All the simulation curves show a shift to the
left indicating that all simulations tend to underestimate the most frequent wind speed
compared with observation. The corresponding scale and shape parameters are presented
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Figure 6.13: Time series of wind speed (top panel) and direction (bottom panel) at height
of 90 m for FINO1 station during a period between 20− 26 July 2015).

Table 6.4: Statistical parameters of the observed and the simulated wind speeds at FINO1
station during the misalignment periods (i.e. 10− 12 July and 20− 26 July 2015)

Parameter Observation CTRL Online wave Offline wave (Mis)Alignment com1 wave
Min 0.3 0.18 0.06 0.21 0.14 0.07
Max 16.12 15.04 15.86 15.73 14.95 17.20
Std 3.21 3.21 3.34 3.33 3.22 3.52

Correlation 0.83 0.81 0.83 0.81 0.82
MBA -0.35 -0.23 -0.23 -0.32 -0.17
MAE 1.30 1.35 1.31 1.33 1.28
RMSE 1.93 1.98 1.90 2.00 2.02
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in Table 6.5. Weibull shape and scale parameters for observation data are 2.10 and 7.24
respectively. All simulations underestimate the shape and scale parameters, and mini-
mum errors for the shape and the scale parameters are related to the online wave and the
com1 wave experiments respectively.

The Taylor diagram of all simulations during the misalignment period is shown in Fig.
6.16. As can be seen, the simulation results are almost similar. (Mis)Alignment, CTRL,
and Online wave experiments are very close to each other.
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Figure 6.14: Wind rose comparisons between the observed (top) and simulated wind fields
for the entire misalignment study periods (i.e. 10− 12 and 20− 26 July 2015)

6.2.2 Wind shear and Veer

Figure 6.17 shows the variation of wind speeds with height between 20−26 July 2015. The
predominant blue color in this figure indicates that the wind speed is often low during the
study period. Most of the time, the model is able to simulate wind variations with height
by a proper accuracy.

Figure 6.18 shows the variations of wind roses with height. For Observation data, the
dominant wind direction shows a slight counterclockwise turning with a height from 33
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Figure 6.15: Comparing Weibull distribution functions of the observed and simulated wind
speeds during the misalignment periods (i.e. 10 − 12 and 20 − 26 July 2015). Light blue
bars show the histogram of the observation data.

Table 6.5: Weibull distribution parameters of observation and simulations during the
misalignment periods at the FINO1.

Parameter Observation CTRL Online wave Offline wave (Mis)Alignment com1 wave
Shape 2.10 1.95 1.98 1.94 1.96 1.87
Scale 7.24 6.77 6.92 6.98 6.85 7.04
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2015).

83



HIPERWIND 6 WIND-WAVE INTERACTION RESULTS

m to 90 m. But for simulated data, there aren’t any changes with height regarding the
dominant wind direction. As mentioned earlier, this could be due to the small differences
between the levels’ heights in the model.
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Figure 6.17: Time-height plots of thesimulated wind, the observed wind from FINO1, and
the NORA3 wind data for a period between 20 − 26 July 2015. White areas in the wind
measured data indicates the shadow zones or missing data.

6.2.3 Roughness length

The time series of wind speed and roughness length during the misalignment period (20−26
July 2015) at FINO1 station are presented in Fig. 6.19. The variations of surface roughness
are very small in most experiments except for the (Mis)Alignment and the CTRL runs. The
roughness length in the CTRL experiment depends directly on the wind speed and the results
of the (Mis)Alignment experiment show lots of fluctuations in time. Other simulations show
small changes during high wind speeds.

Changes in roughness length with wind speed are shown in Fig. 6.20. The results of the
CTRL run show an increasing trend as a function of wind speeds. In the (Mis)Alignment
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Figure 6.18: Wind roses at three different heights from observations and simulation results
for 20− 26 July 2015.
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experiment, the surface roughness increases with a steep slope for wind speeds over 7 m/s.
The online wave results show the same behavior as the observed roughness length, but with
a lower slope and for the wind speeds more than 8 m/s.

10 5

10 3

ZN
T 

(m
)

a
CTRL

10 5

10 3

ZN
T 

(m
)

b
Online_wave

10 5

10 3

ZN
T 

(m
)

c
Offline_wave

10 5

10 3

ZN
T 

(m
)

d
(Mis)Alignment

2015-07-20 2015-07-21 2015-07-22 2015-07-23 2015-07-24 2015-07-25 2015-07-26
Time

10 5

10 3

ZN
T 

(m
)

e
com1_wave

0

10

20

W
SP

D(
m

/s
)ZNT

Wind Speed

0

10

20

W
SP

D(
m

/s
)

0

10

20

W
SP

D(
m

/s
)

0

10

20

W
SP

D(
m

/s
)

0

10

20

W
SP

D(
m

/s
)

Figure 6.19: Changes of the wind speed and roughness length (ZNT) with time at FINO1
station during 20 − 26 July 2015 for: (a) the CTRL run; (b) the online wave experiment;
(c) the offline wave run; (d) the (Mis)Alignment run; and (e) the com1 wave experiment.

6.2.4 Wind energy

Figure 6.21 shows the distribution of the wind speed in the domain 3 of simulations for the
period of 20 − 26 July 2015. In the misalignment period (i.e. low wind speeds), we can
see that the online wave experiment predicts the maximum amount of energy within the
model domain. The lowest energy estimation in this period is related to the com1 wave
run. A comparison of the simulated wind power with the observations at the FINO1 is
shown in Fig. 6.22. At low wind speeds, the model usually underestimates the wind energy
compared with the observations. The total extractable wind power from the measurement
is 979867 W/m2 and the com1 wave run, by estimating the total wind power of 967747
W/m2 in this period, has the least difference with respect to the observational data.
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Figure 6.20: Roughness length versus wind speed for different simulations during 20− 26
July 2015.

Figure 6.21: Spatial distribution of the mean wind power (W/m2) at 90 m height in the
WRF model domain for the period of 20− 26 July 2015. Blue dots show the locations of
the wind turbines in the study area, and the red dot showed the location of the FINO1.
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Figure 6.22: Time series of mean wind power (W/m2) at the FINO1 station for the period
of 20− 26 July 2015.
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6.3 Wave boundary layer case study
Figure 6.23 shows the time variation of the wave age during June 2015. The blue-coloured
area represents a favourite condition for the swell waves with a high likelihood of wind-wave
interactions (we select this duration as the study period because it contains both the no-
swell and the mixed wind-sea and swell conditions). The time series of the air-side friction
velocity u∗a illustrates that several young sea state events create large surface roughness for
the friction velocity above, approximately, 0.2 m/s. The largest values of u∗a occur during
the lowest wave age episodes (there is an inverse relationship between the variation of the
wave age and friction velocity). We use the high-frequency temperature and wind data (i.e.
with a sampling frequency of 25 Hz) observed from the sonic anemometer at a height of
15 m to estimate the Monin–Obukhov stability parameter L, i.e. Eq. (5.1). During the
swell events as shown in Fig. 6.23, the Monin-Obukhov (MO) theory fails in adjusting the
wind profile within the marine atmospheric boundary layer. However, we use values of L
to classify the stability regimes, particularly during the study period (i.e. with negative and
positive values denoting the unstable and stable conditions). The magnitude of L indicates
a distance that buoyancy production plays a dynamically important role in the turbulent
kinetic energy budget with respect to surface shear production. Figure 6.23b shows during
the study period when the wave age is large, the MABL tends to be stable, and the majority
of high wind events occur during unstable conditions. Figure 6.23c represents the time-
evolution of the power spectral density of the horizontal wind speed (i.e. u-component, the
same characteristics are observed for the w-component) overlaid by the time series of the
wave peak frequency, fp, measured by the surface buoy operating in the close vicinity of
the FINO1 met-mast (gray markers). There is a good agreement between the measured fp

and the spectral peak of u-component wind from sonic data at the wave frequency band
(i.e. the frequencies within the coloured horizontal band) is consistent with an increase in
the values of wave age. The agreement becomes better if the atmosphere is stable and is
less pronounced in the presence of strong convective cells (i.e. unstable conditions before
June 25).

Due to the focus of this study, we use the COAWST modeling system with activated
WRF (allowing three nested domains as shown in Fig. 3.7) and SWAN (including only
one domain). The WRF model with CTRL setup (see Table 3.3) downscales the reanalysis
ERA5 for the coupling between atmosphere and wave at a grid resolution of 1 km in our
study. Furthermore, the WRF model contains 60 vertical levels to assure a reasonable
representation of wind turbines in the Southern North Sea area where turbines of different
sizes and heights are operating. We use Fitch (2016) parameterization of wind turbines
in the WRF by considering the proposed correction of Archer et al. (2020). For the wave
conditions along the grid boundaries of the parent SWAN domain, we extract the two-
dimension spectral information from the NORA3 hindcast with 3-hourly temporal resolution.
The SWAN parent domain covers properly the area of FINO1 and Alpha Ventus wind park
with a 1km horizontal grid resolution, in order to capture realistically the swell propagation
(containing 241 × 426 grid points). For the SWAN model, we use the wind input and
white-capping of Janssen (1991), hereafter Janssen, and ST6 source term formulations. To
study the impacts of wave model resolution on wave propagation and statistics, we conduct
additionally another WRF-SWAN experiment with two nested domains and use its result
at a grid resolution of 3km (the parent outer domain with 453 × 417 grid points). Our
overall objective is to compare two source term formulations in SWAN that account for the
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Figure 6.23: Time series of (a) wave age cp/u∗a in which cp denotes the phase speed
estimated from the surface gravity wave dispersion relation based on observed values of the
significant wave height, Hs and the wave peak period, Tp; (b) Monin–Obukhov stability
parameter, L; and (c) energy spectral time evolution for the u-component of wind during
June 2015 calculated from the 15 m height sonic anemometer with a sampling frequency
of 25Hz. Blue coloured regions in (a) and (b) represent the study period. The shaded area
in (c) denotes the wave-affected frequency band.
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WBL during the selected study period. It is noted that the WBL modules implemented in
SWAN do not account for the thermal effects on wind-wave interactions. Particularly, the
ST6 uses an empirical drag coefficient that is dependent only on wind speed.

We show in Fig. 6.24 the synoptic situations during two representative dates corre-
sponding to the unstable and stable conditions. At 24 June 2015 cases (Figs. 6.24a, b,
and c), similar regions of high wind speeds are situated to the northeast of domains over
the ocean, with peak wind speeds in the excess of 12m/s. While the wind speeds are
higher in these regions for ST6 and Janssen experiments, they show slightly different spa-
tial distribution compared with the ST6-NEST experiment (which shows more pronounced
locally enhanced wind). In these three cases, the pressure contours are somewhat in perfect
structural agreement and there is no synoptic feature in the study area. In Figs. 6.24d, e,
and, f, the flow field with the highest wind speeds are established over the land (along the
southeast boundary, most likely due to the interactions between the flow and topography).
The highest wind speed belongs to the Janssen experiment on this date (June 25, 2015
12 UTC) followed by the ST6-NEST and the ST6. There is also evidence of localized
regions of small wind speeds over the ocean in the area of FINO1 captured by the ST6
and the Janssen experiments. The spatial variation of the wind speed at 10 m shows very
distinguished differences between different experiments along the northern (and southeast
corner) of the domain mainly affected by the boundary conditions, particularly for the ST6-
NEST case. The structure and size of the wind field in this experiment will have important
impacts on the surface wave generation, propagation, and the spatiotemporal variability of
the interactions between the atmosphere and ocean.

The spatial variabilities of the wind vertical velocity at 100 m height are compared for
different wave physics under two stability regimes in Fig. 6.25, and at two different dates.
Results in Figs. 6.25a, b, and c at June 24, 2015 08 UTC indicate that the model experiment
with a two-domain nested SWAN setup provides slightly different spatial patterns while two
other experiments result in close agreement. Beside the fact that the discrepancies between
Fig. 6.25a and b are caused by the model resolution and different behaviour of the SWAN
model across the boundaries of one- and two-nested domains, differences between Fig.
6.25b and c might be directly explained by the differences in the formulation of the wind
input and white-capping, and indirectly through the effects of wind drag and forcing, and
nonlinear (wave-wave and wave-wind) interactions. According to Fig. 6.23b, the unstable
stratification and the increased turbulent mixing during this time modulate the flow field
behavior and its interaction with the surface gravity waves (note that the wind shear is
approximately constant in this period, not shown). Figures 6.25d and e further highlight
the importance of atmospheric stability during the wind-wave episode on June 25, 2015
12 UTC (see Fig. 6.23b coloured area). Large discrepancies are observed between the
ST6-NEST and the ST6 experiments both in coastal regions and the open ocean, and large
values of w at 100 m in the ST6-NEST experiment are distributed more homogeneously
over the open ocean than the ones from the ST6 experiment. Significant wave height, Hs,
decreases to 1 m in this case while the interaction between the wind and wave enhances
(see Fig. 6.23c), and Figs. 6.23e and f show somewhat similar and comparable spatial
patterns (despite some differences, for instance, around 7oE and 54oN).

Vertical cross-sections over the middle of the domain passing through the FINO1 for
heights below 1200 m at 24 June 08 UTC are shown in Fig. 6.26. The horizontal wind
speeds, Uh, are characterized by an elevated unstable layer over the land, with moderately
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Figure 6.24: The 10 m wind speed overlaid with the sea-level pressure (contours—mb)
from: (a,d) the ST6-NEST experiment; (b,e) the ST6 experiment; and (c,f) the Janssen
experiment. Snapshot results in (a,b,c) are at June 24, 2015 08 UTC, and results in (d,e,f)
are at June 25, 2015 12 UTC.
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Figure 6.25: Snapshots of spatial variation of the vertical velocity w from different WRF-
SWAN experiments: (a,d) SWAN with two nested domains with ST6 parameterization;
(b,e) SWAN with only one domain and ST6 parameterization; and (c,f) SWAN with the
same domain but Janssen parameterization. Results in (a,b,c) are at June 24, 2015 08
UTC, while results in (d,e,f) are at June 25, 2015 12 UTC.
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Figure 6.26: Vertical cross sections of WRF-SWAN simulations at 24 June 2015 08
UTC for: (a,c,e) horizontal wind speeds, Uh, corresponding to the ST6-NEST, the ST6,
and the Janssen experiments (top-bottom), respectively; and (b,d,f) vertical velocities, w,
corresponding to the ST6-NEST, the ST6, and the Janssen experiments (top-bottom),
respectively. All plots of Uh are overlaid with potential temperature (contour gray lines).

strong horizontal winds (downstream of the FINO1) that very rapidly decrease towards the
ocean (the land will be warmer than the ocean after 09:00 and this might be the reason for
a week sea breeze at this time). A comparison of the ST6-NEST results (both Uh and w)
with other simulations indicates that the ST6-NEST simulation provides a slightly different
representation for the flow field, particularly in the area of FINO1. Figures 6.26b, d, and
e show strong vertical upward (downward) movements, due to the surface heating (we
overlaid the potential temperature to show the interconnection between the temperature
and the wind speed over the land and ocean). In this case, the vertical motion over the
land and offshore are considerably lower while both the ST6 and the Janssen experiments
show the formation of convective cells at the boundary of the land-sea as well as over the
ocean (particularly close to the location of FINO1). These cells are vertically expanded
over, approximately, the entire study height.

Figure 6.27 shows the vertical cross-sections over the middle of the domain passing
through the FINO1 for heights below 1200 m at 25 June 12 UTC. In Fig. 6.26, it was
shown how the wind formed over the land early morning, and due to solar heating, a
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Figure 6.27: Vertical cross sections of the WRF-SWAN simulations at 25 June 2015 12
UTC for: (a,c,e) horizontal wind speeds, Uh, corresponding to the ST6-NEST, the ST6,
and the Janssen experiments (top-bottom), respectively; and (b,d,f) vertical velocities, w,
corresponding to the ST6-NEST, the ST6, and the Janssen experiments (top-bottom),
respectively. All plots of Uh are overlaid with potential temperature (contour gray lines).

strong baroclinic zone evolves around noon. All model results show very strong upward
(downward) vertical motions over the land which is now warm (see the temperature contour
lines), and high wind over the ocean (and around the FINO1 area). While the ST6 and
the Janssen simulations suggest similar distribution of Uh, the vertical velocities are not in
good agreement. Close to the FINO1, the winds are approximately parallel to the coast
(Fig. 6.24e and f), suggesting less likelihood for frictional decoupling. However, the ST6-
NEST wind vectors at the coastal areas exhibit more tendency to cross the German Southern
coast highlighting more chance for frictional decoupling. All model results show wind nearly
everywhere, but there is a clear discrepancy in vertical/lateral distributions of wind at the
boundary between land and sea.

Figures 6.28a, b, and c provide an overview of horizontal wind speeds corresponding to
the wind-wave interaction case study between 24 and 26 June 2015 for heights below 250 m.
These plots also highlight the influence of domain size and nesting boundary information
on WRF-SWAN simulations in better representation of the flow field and its variations
during the convective and (stable-unstable) mixed stability conditions. A qualitative look at
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these plots suggests that all runs reproduce the wind variation both during the convective
conditions (early simulations at 24 June between 00 UTC and 06 UTC) and during the
high wind speed event around 24 June at 15:00 UTC. Specifically, the variations are better
captured using the higher resolution runs of the ST6 and the Janssen, whereas the coarser
experiment overestimates the wind when the wind declines to the values below 2− 3 m/s.
Even though all model runs produce qualitative similarities with the observational time
series (i.e. Fig. 6.28d), the ST6-NEST leads to large errors during the low wind events.

Figure 6.29 gives an overview of wind direction for different model simulations. During
the high wind event (at 24 June at 15 UTC), the wind direction decreases from approx-
imately 300o to 250o for all runs, with a very good qualitative match with wind vane
measurements at 90 m height (see Fig. 6.29d). For the first 6h at 25 June, the wind di-
rection gradually reduces from 280o to 180o, and the ST6-NEST predicts with the highest
accuracy the wind direction at 25 June between 00 UTC and 13 UTC. All models are not
able to capture properly the variation of the wind direction after 13 UTC.

In Fig. 6.30, we compare the spatial variation of Hs against significant wave height
data from ERA5 on June 24, 2015 18 UTC, when the wind speed reaches its peak during
the study period. While the magnitudes of spatial variation of Hs show some similarities
(particularly between the ST6 and Janssen runs), the spatial map of Hs from the ST6-
NEST run demonstrates considerably higher values of Hs with a different spatial pattern,
especially for the shallow water areas close to the Southern coastline. All maps are in good
agreement in predicting the highest wave heights within the area located in the northeast
of the domain (close to the eastern coast). In short, the ST6, the Janssen, and the ERA5
represent strong spatial similarities.

The spatial variations of mean wave period Tm from different WRF-SWAN experiments
are compared with the one from the ERA5 in Fig. 6.31. Results show insignificant simi-
larities between the Janssen run and the ERA5 (as expected), and the spatial distribution
of Tm from ST6 at this time is in good agreement with ERA5 and Janssen runs, but with
lower magnitudes (specifically on the northern side of the domain with a typical magnitude
of 4 s compared with 6.5 s from the ERA5 and the Janssen experiments).

To test which SWAN configuration yields better results, we extract wave spectral and
bulk information at the location of FINO1 and compare the model results to the nearby buoy
measurements. The results of the SWAN simulations forced through the nested boundaries
are shown in Fig. 6.32. It is observed that the wave conditions are almost energetic during
the study period (i.e. Hs > 0.5 m, see grey markers in Fig. 6.32a). All modelled results of
Hs, peak wave period (Tp), and Dp are generally in good agreement with the corresponding
measurements, but Tp cannot be reproduced accurately before 24 June at 12 UTC, and the
error in Hs from the ST6-NEST run increases when the wind speed decreases bellow 2 m/s
towards the end of the study period. The high energy overestimation in the ST6-NEST
results might be explained by the wind forcing for this configuration and the corresponding
wind drag formulations. In general, different source term packages in SWAN runs show
very similar performance, when compared with the observed values.

Figure 6.33a represents typical sea-state conditions during the study period (i.e. the wave
condition from the surface buoy at 24 June 18 UTC is dominated by the north-northwesterly
waves). This spectrum corresponds to a dominant energy peak (not fetch-limited condition)
with a wide energy spread in direction and frequency. The spectrum is characterized as a
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Figure 6.28: Time-height representations of the wind speed at geographical location
of FINO1 between 24 − 26 June 2015, from: (a) the Janssen simulation; (b) the ST6
experiment; and (c) the ST6-NEST experiment. Panel (d) shows the comparison between
different WRF-SWAN experiments and observation from FINO1 mounted cup anemometer
at 90 m height. The yellow shaded area in this subplot represents the time when the
ST6-NEST time series deviate from measurement.
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Wind direction
[Degree]

Figure 6.29: Time-height representations of the wind direction at geographical location of
FINO1 between 24−26 June 2015, from: (a) the Janssen simulation; (b) the ST6 run; and
(c) the ST6-NEST experiment. The horizontal dashed line indicates 90 m height to be used
in the time series comparisons hereafter. Panel (d) shows the comparison between different
WRF-SWAN experiments and the observation from the FINO1 mounted cup anemometer
at 90 m height. The yellow shaded area in this subplot represents the time when the
ST6-NEST time series deviate from the measurement.
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Hs [m]

Figure 6.30: Snapshots of spatial variation of Hs over the study area at June 24, 2015,
at 15 UTC: (a,b,c,d) Hs from the Janssen, the ST6, the ST6-NEST, and the ERA5,
respectively.
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Tm [s]

Figure 6.31: Snapshots of spatial variation of the mean wave period Tm over the study
area at June 24, 2015, at 15 UTC. (a,b,c,d) Tm from the Janssen, the ST6, the ST6-NEST,
and the ERA5, respectively.
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(a)

(b)

(c)

Figure 6.32: Time series of bulk wave parameters during the study period at the FINO1
location from three model experiments and surface buoy data. From top to bottom: (a)
the significant wave height, Hs, (b) the mean wave period Tm; and (c) the peak wave
direction, Dp. All plots overlaid with the corresponding buoy measurements of Hs, Tm,
and Dp. Two vertical dashed lines show two analysis times (corresponding to the high- and
low-wind events) to be used in coming figures.
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(a) (b)

(c) (d)

Figure 6.33: Modelled and measured 2D frequency-direction spectra for a northerly-
northwesterly wave conditions at 24 June 2015 18:00 UTC): (a) the measured frequency-
direction spectrum; and (b,c,d) the modelled 2D spectra by the Janssen, the ST6, and the
ST6-NEST respectively.

mixed sea including both a well-developed sea (frequencies larger than 0.15 Hz) and swell
waves (i.e. frequencies less than 0.15 Hz). Corresponding 2D spectra from the WRF-SWAN
runs are shown in Figs. 6.33b, c, and d. There is a very satisfying qualitative agreement
between the modelled and the measured spectra at this time. The energy at the (north-
northwesterly) peak of the observed spectra decreases from the northern to the western part
of the sector but this variation is specifically more erratic for all model spectra. The ST6
(and the Janssen run), however, gives a slightly better representation of these directional
spreading but predicts also a local erratic westerly peak at 0.2 Hz. This secondary westerly
energy overestimation, corresponding to the wind-sea component, is highest in the ST6-
NEST experiment. In general, the swell component (in the north-northwesterly segment) is
not only more energetic for the observed spectra than the modelled spectra, but also wider
in direction. Contrarily, the wind sea component (in the westerly sector) is less energetic
for the observed spectra than for the modelled ones.

While all models could capture effectively the dominant wave direction, we observe,
however, slight discrepancies between the measured and the modelled wave directional data
(i.e. Fig. 6.34). The ST6 and Janssen run at this time are in very good agreement with
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(a) (b)

(c) (d)

Figure 6.34: Modelled and measured 2D frequency-direction spectra for a northerly-
northwesterly wave conditions at 25 June 2015 20:00 UTC): (a) the measured frequency-
direction spectrum; and (b,c,d) the modelled 2D spectra by the Janssen, the ST6, and the
ST6-NEST experiments respectively.

observation for north-northwesterly waves. The measured 2D spectrum shows a slightly
wider energy distribution in direction. Furthermore, the ST6-NEST is lacking accuracy in
capturing the magnitudes of dominant waves and it further produces non-realistic waves in
different directions and frequencies.

In Fig. 6.35, we check qualitatively the ability of the ST6 and the Janssen experiments in
capturing the spectral shapes of the wave energy spectra during the study period. Consid-
ering the coarse temporal outputs (i.e. 5-min), both model runs are in satisfying agreement
with observation.

In Fig. 6.36, we compare how different source terms and WBL packages can model the
shape and evolution of the wind energy source term Sin(f), where f denotes the frequency
in Hz. The frequency spectra of different WBL packages (in the logarithmic scale) at
the location of FINO1 represent somewhat similar spectral variability (in both shape and
magnitude). Some differences are observed both in the frequency of the peak value of
Sin(f) and its temporal variation (there is a forward lag in time when using Janssen setup).
For frequencies between 0.3 Hz and 0.6 Hz before high wind event, the ST6 results are
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Figure 6.35: Time-frequency spectra of the wind energy S(f) for: (a) observation; (b)
the ST6 simulation; and (c) the Janssen run.
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more energetic and the differences are further pronounced until 25 June at 00:00 UTC.
This might be because the two packages perform similarly for frequencies below the tail
frequencies (i.e. frequencies below 0.3 Hz) and behave differently at the high-frequency tail
(i.e. frequencies beyond 0.3 Hz).

Figure 6.36: Time-frequency spectra of the wind energy input source term Sin(f) for: (a)
the ST6 simulation; and (b) the Janssen run. The vertical dashed lines denote times that
wind input frequency spectra will be used for more detailed analysis in the next figure.

We investigate in Fig. 6.37, the shape variation of the source terms Sin and Sds for
two selected times at June 24 2015 04:00 UTC and June 24 2015 16:00 UTC (see also
Fig. 6.36). Figure 6.37a shows that the wind input source term of ST6 is approximately an
order of magnitude larger than the one from the Janssen simulation at the same time. The
peaks in ST6 results are more pronounced and the dominant peak in the Janssen source
term is shifted towards the higher frequencies. The dissipation source terms are somewhat
similar and the ST6 gives lower values for the frequencies between 0.4 Hz and 0.7 Hz. In
Fig. 6.37b, the Janssen model of Sin gives more energetic variation at lower frequencies
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than the ST6 wind input source term (that shows a smooth peak at higher frequencies).
Dissipation source terms of both formulations have the same magnitude but with a lower
peak frequencies for the Janssen results than the ST6 peak frequencies.

Figure 6.37: Spectral variation of the wind input source terms Sin (positive values) and
dissipation source terms Sds (negative values) as a function of frequency for two dates
marked in the previous figure (vertical red dashed lines): (a) June 24, 2015 at 04:00 UTC
(high wind); and (b) June 24, 2015 at 16:00 UTC.

6.4 Discussion
In this section, to consider the effects of wave-wind interactions on wind field and energy
simulation, we developed some offline wave coupling system in the WRF model and compare
it with online WRF-SWAN models. The offline wave-wind coupling can run stand-alone with
the WRF and costs less computational resources compared to online wave-wind coupling
models. Therefore, it can be used as a suitable method to consider the interactions between
waves and winds. The offline coupled wave system results revealed good performance
compared with online coupling system and the observations. The results showed that at
high wind speeds (Alignment period), where the wave-wind interaction can increase, offline
coupling systems perform well. But simulations didn’t show significant differences in low
wind speed (Misalignment period).

7 Towards the terra incognita: WRF-LES

7.1 Background
As discussed in previous sections, some small-scale processes cannot be captured using
mesoscale models. For this purpose, a LES model can be used to simulate these scales. To
close the model chain from meso- to micro-scale, we can use a dedicated LES model–the
PALM model–with the forced boundary conditions from the output of the WRF, which
will be presented in the next section. However, because the PALM’s resolution is much
higher than the WRF, in an order of ten meters compared to kilometers, there might be
discontinuation of energy cascading from meso- to micro-scale. Also, the output frequency
of the WRF cannot be too high because of the storage limitation. Thus, such sudden
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downscaling and low-frequency boundary forcing may cause a loss of spatial and temporal
information.

A seamless approach is using an intermediate online coupling LES model, which fortu-
nately can be done directly using the WRF with appropriate dynamics options, in other
words, in WRF-LES model. This section will explore a few case studies using the WRF-LES
to assess the ability of the WRF to simulate the turbulent properties of the atmospheric
boundary layer.

Traditionally, idealized LES assumes a constant state of the background flow with a
double-periodic lateral boundary condition so that the turbulent eddies have enough time
to develop to reach their equilibrium state. However, for real-world applications, sometimes
the real-data, time-dependent background conditions are critically important, for example,
the change of the turbulent property during the passage of a front or an OCC event. Thus
a nesting technique can be applied in these situations where the background information is
simulated in real-time and passes to the LES domains through their lateral boundaries.

This section will discuss the application of the online nesting techniques where the WRF
is run in a RANS mode and LES mode at the same time. In the RANS mode, 3 nested
domains are used to downscale the ERA5 reanalysis data to 1 km resolution. In the LES
mode, the simulated information continues to be passed down one or two further nesting
levels with resolutions of 200 m and 40 m. First, we will examine an LES case using different
dynamics options of diffusion mixing evaluation. Then we will discuss the turbulent spin-up
issues in nesting of WRF-LES with the cell perturbation technique.

7.2 And OCC case study for Teesside region

Figure 7.1: WRF-LES domains for the Teesside site. The first 3 domains (D01–D03, left)
are used for in RANS mode, the finest 2 domains (D04–D05, right) are used for the LES
mode.

First, we performed the experiments in Table 3.5 for the Teesside region during the OCC
event explored in section 5.1. Figure 7.1 shows the WRF domains for the Teesside region.
The first 3 RANS domains, D01, D02, and D03, are the same as the WRF simulation, with
resolutions of 9 km, 3 km, and 1 km respectively. Both LES domains D04 and D05 have
481×481 grid points with resolutions of 200 m and 40 m, thus with domain widths of 96
km and 19.2 km, respectively.
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Five experiments were designed (Table 3.5). The WRF RANS domains are integrated
from 00Z 21 Nov 2015 and run for 2 days. However, to save computational time, the LES
domain D04 starts from 10Z and D05 starts from 11Z, 22 Nov until 16h00. The data time
series at every time step at the Teesside mast locations are extracted for calculating the
turbulent intensity. However, we use only 2.5 hours from 13:30 to 16:00 to discard the
spin-up time of the WRF-LES simulations.

(b) LES_NBA

(c) LES_Smag (c) LES_Smag_NBA

(a) LES_CTR

(e) LES_WENO

Figure 7.2: A snapshot of vertical velocity on the model level 20 (about 500m) of the
WRF-LES domain D05 (40m) at 13:40 22 Nov 2015.

Figure 7.2 shows a snapshot of the vertical velocity of the experiment after the spin-up
time. Except for the WENO experiment, the turbulence evolves fully in the experiments
and there is a slight difference when the NBA option is turned on or off. At the current
time slice, the turbulence is slightly stronger for the Smagorinsky options. On the other
hand, the turbulence does not evolve fully for half of the domain.

Figure 7.3 shows the 50-m turbulent intensity for D03, D04, and D05 and its comparison
with the Teeesside’s mast observation. It is not surprising that the WRF-RANS (Fig. 7.3a)
cannot capture the turbulent intensity compared to the observation. On the other hand,
both 200-m and 40-m WRF-LES simulations can capture a turbulence level realistically.
The WENO experiment perform the worst, probably due to the slowly evolved turbulence
as shown above. Overall, the averaged turbulent intensity of NBA experiments is closer to
the observation, and D05’s TI is slightly larger than the one from D04 results.

The variance of the turbulence intensity is generally smaller than that of the observation
and is not consistent across the two domains. For example, LES-NBA has the closest
turbulent intensity variance compared to the observation for D04 but does not per well for
D04.
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(a) Turbulent Intensity for WRF D03

(b) Turbulent Intensity for WRF_LES D04

(c) Turbulent Intensity for WRF_LES D05

Obs LES_NBA LES_Smag LES_Smag_NBALES_CTR LES_WENO

Figure 7.3: Turbulent Intensity for different WRF-LES experiment vs Teesside mast’s
anemometer.
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7.3 Cell perturbation simulation
In section 7.2, the WRF-LES is effective in generating a reasonable level of turbulent
intensity, even from a coarse LES resolution of 200 m, for an OCC event. Because of the
availability of the high-frequency sonic anemometer data for the FINO1 site, we investigated
another OCC event from 09–10 July 2015. The sonic anemometer data is measured at a
height of 15 m with a frequency of 25 Hz and will be used in the energy spectral analysis.
This OCC event is characterized by a strong wind speed of over 10 m/s, which may cause
a problem for the WRF-LES simulation as the turbulent eddies do not have enough time
to evolve. For this reason, we choose this event to assess the effectiveness of our cell
perturbation implementation (see section 3.6.2).

We choose the experiment LES NBA (Table 3.5) as the base experiment because of its
good ability to reproduce the turbulent intensity for the Teesside region (Fig. 7.3). Because
of the computation limitation, we use 4 domains for the experiment: three WRF-RANS
domains with resolutions from 9 km down to 1 km, and one WRF-LES domain with a
resolution of 200 m. For the cell perturbation, we consider the characteristic velocity of 10
m/s, so the perturbation time scale Ts = 160 seconds. Three cell perturbation strategies
are designed (Table 7.1): LES CP1 uses cell perturbation for horizontal grids only (point
perturbation for vertical grids); LES CP2 applies cell perturbation for both vertical and
horizontal grids; and LES CP3 changes the perturbation sign alternately.

The WRF-RANS domains start the simulation from 00Z, 9 Jul 2015, and produce the
full 3D output every 1h. On the other hand, the WRF-LES starts later from 12Z and
integrates for 12h, and has an output frequency every 10 minutes. The high-frequency
time series at every time step is extracted at the FINO1 platform location for the spectral
analysis.

Table 7.1: WRF-LES experiment design for FINO1 site from 9–10 Jul 2015
experiment LES NBA LES CP1 LES CP2 LES CP3

Horizontal cell perturbation No Yes Yes Yes
Vertical cell perturbation No No Yes No

Alternate sign - No No Yes

Figure 7.4 shows the wind speed at 90 m for the four 200-m WRF-LES simulations
compared with the WRF-RANS (WRF D03), mast anemometer, and LiDAR data at the
FINO1 mast station. After about 1 hour of the spin-up time for the information from
the boundary to reach the mast location at the center of D04, the WRF-LES experiments
have variations with much higher frequency compared to the 1-km WRF result and mast
anemometer, which is 10-min averaged. There is a positive systematic difference of about
5 m/s between the WRF and WRF-LES wind speed compared to the mast data, which is
identified as the shadow effect of the mast pole when the wind is from the NW direction
(Fig. 4.2). On the other hand, the LiDAR data is close to both WRF and WRF-LES after
the spin-up time of each experiment (about 6 h for WRF D03, and 1 h for WRF-LES). In
general, the WRF-LES fluctuates around the WRF D03. However, around 21Z, 10 Jul 2015,
the WRF-LES has a slight deviation from the WRF and is closer to the LiDAR observation.

In this study period, we have the 25-Hz frequency sonic anemometer at the height of 15
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Figure 7.4: FINO1 90-m wind speed of WRF-LES experiments vs 1-km WRF, mast’s
anemometer and LiDAR observation.
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Figure 7.5: FINO1 15-m wind speed of different WRF-LES experiments vs 1-km WRF,
Sonic observation and mast’s anemometer at 33m.
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m, which is shown as the light gray lines in Fig. 7.5. We also show the 10-min wind speed
of the lowest cup anemometer at 33 m. The 10-min averaged sonic data fits surprisingly
well with the 33-m cup wind speed, which means somehow the 33-m cup anemometer
either does not suffer from the shadow effect as the 90-m one, or both the 15-m sonic
anemometer and the 33-m cup anemometer are affected by almost the same shadow effect.
The previous is likely to be true as the 33-m wind speeds are about 2 m/s stronger than
that of the 90-m cup wind speed.

After being re-sampled to a 10-min average, the sonic data fits well with the WRF-
RANS and WRF-LES 7.5. For the high-frequency fluctuation, the WRF-LES can capture
some fluctuations with an amplitude that is much larger than the WRF-RANS. However,
the amplitude is still much smaller than the 25-Hz sonic data. We also re-sample the sonic
data to 1.5 Hz, which is the output of the WRF-LES, however, the re-sampled sonic’s
fluctuation is still much larger. There are a few possible reasons for this difference: a) the
WRF-LES resolution is still not fine enough to capture such large-amplitude, high-frequency
fluctuation; b) there is a lack of turbulence generation in the WRF-LES compared to the
real data.For example, some of the turbulence sources not present in the WRF LES are the
obstacles of wind turbines and the mast station, as well as the roughness from the ocean
wave.

The above time series of different WRF-LES experiments look similar. However, the
snapshots of 90-m WRF-LES wind speed (Fig. 7.6) tell a different story. In the LES NBA
experiment (Fig. 7.6a), in almost three fourth of the domain—half the domain on each
side, the turbulence is not fully developed. The reason for this is that the flow needs a
certain amount of time for the turbulence to be evolved. Because the background wind
speed is large, the region of under-developed turbulence expands.

In the cell perturbed experiments (Fig. 7.6b–d), the turbulence evolves much earlier.
However, for the normal implementation of a single perturbation field (LES-CP1 and LES-
CP2), there are line-like features extending from the boundaries. The effect of vertical cell
perturbation is not clear as the turbulence features look similar for LES-CP1 and LES-CP2.
When we alternate the sign of the perturbation field in LES-CP3, the turbulence feature
looks more natural for most of the domain (Fig. 7.6d).

Figure 7.7 shows the power spectrum of the 15-m wind speed of the sonic anemometer
and WRF/WRF-LES simulations. The 1-km WRF spectrum quickly drops for the sub-
hour fluctuations. On the other hand, the WRF-LES simulations can capture a realistic
spectrum until few-minute fluctuations before sharply dropping. Despite the boundary
problems (Fig. 7.6), all WRF-LES experiments have a similar spectrum at the FINO1
location near the center of the domain where the turbulence has enough time and distance
to evolve. However, in other situations, such as a smaller domain or a slower turbulence
evolution, these boundary conditions may take a more important role.

7.4 Discussion
We have demonstrated that the online nesting WRF-LES has the capability to capture the
turbulent intensity close to the observation to some extent. In some situations, WRF-LES
simulation may lack turbulence near the inflow boundaries. This issue can be alleviated by
using a simple cell perturbation on the potential temperature around the boundaries and
an alternate change of sign can improve the representation of the turbulence.
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Figure 7.6: Snapshots of 90-m WRF-LES wind speed at 15Z, 9 Jul 2015. The yellow
symbols show the locations of the surrounding wind turbines and the red star shows the
location of the FINO1 platform.
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Figure 7.7: Power spectrum of wind speed at the FINO1’s cup anemometer vs 1-km WRF
and 200-m WRF-LES experiments vs 1-km WRF.
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The coarse 200-m WRF-LES can also capture the spectra of the wind speed fluctuations
near the surface with periods greater than a few minutes, while the 1-km WRF cannot. The
amplitude of the 200-m WRF-LES can be also significantly smaller than the observation.
A finer grid with wave-wind and turbine-wind interaction is recommended.

8 Offline meso-to-microscale modelling: WRF-PALM

8.1 Background and experiment design
As shown in the previous section, the WRF-LES is a powerful tool to seamlessly downscale
the wind field from the mesoscale to the microscale with a horizontal resolution of a few
dozen meters. However, because of the complexity of the WRF model, which is originally
designed for the mesoscale purpose, a higher resolution of a few meters is not practical
because of the computational cost. The official WRF distribution also does not include
the wake effect from individual wind turbines (the wind farm parameterization can take
only into account the collective effect), which is very essential for wind energy applications.
For this reason, as a second model of the microscale component, we use the PALM model
(see Section 3.7), a dedicated LES model which can simulate the large eddy turbulence
more effectively. PALM also includes a wind turbine model that parameterizes the effect
of individual wind turbines. In this section, we used the offline nesting technique with the
forced boundary condition taken from a WRF simulation’s output that is run separately.

Figure 8.1: (a) The WRF inner domain (1 km) used in the WRF-PALM offline nesting
over the North Sea covering the FINO1 offshore met-mast (red marker). The PALM model
contains three subdomains (that we use only two in this report) with horizontal resolutions
of 375 m (outer, D04) and 10 m (i.e. D05) respectively; and (b) the geographical locations
of FINO1 and 12 turbines of the nearby Alpha Ventus wind park.
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We use two nested domains for the PALM model (Fig. 8.1a). The parent domain of
PALM simulations—which gets the information from the 1-km WRF domain from the lateral
boundaries—covers the study site with its sizes of approximately 193 km (east–west)× 193
km (south–north) and the grid sizes ∆x = ∆y = 375 m and ∆z = 10 m. The inner
domain has the grid sizes of ∆x = ∆y = ∆z = 10 m and contains 12 wind turbines of the
Alpha Ventus wind farm (Fig. 8.1b).

8.2 Result
Figure 8.2a shows the observed 10-min averaged wind speed at 33-m height (from the
FINO1-mounted cup anemometer) and the significant wave height, Hs, (measured at the
surface buoy) between November 18 and December 1 2015 to highlight a range of wind
speed variability attributed to several OCC events. The very close correlation of the winds
and wave heights suggests a somewhat fully developed sea surface condition during the
study duration. The first OCC event (determined by the temperature difference between
the sea surface and the air temperature at 2 m height) is between 02–03Z, 22 Nov. 2015.
Wave information is important when we are interested in investigating how wind turbines
respond to the passage of the OCCs. It is obvious that the wind and waves are largely
aligned (i.e. Fig. 8.2b). The second strong OCC event occurs between 20151123 06Z–
20151124 00Z with more clear alignment between the wind and waves.

Figure 8.2: (a) Time series of wind speed measured at 33-m height from FINO1 for 12
days during November 2015 (black line) and significant wave height Hs (red line) measured
at the surface buoy in the close vicinity of FINO1; and (b) times series comparisons of wind
and wave directions at 33 m (black line) and the surface buoy (red line), respectively.

While more in-depth comparison will be given in the respected scientific paper, we briefly
compare the wind speed and direction time series during the study period (i.e. during 22
November 2015, red-coloured areas in Fig. 8.2) using the results of models as well as
observations. In Fig. 8.3, the time series of the PALM data have a temporal resolution
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of 2 minutes while the WRF result and observations are both in a temporal interval of 10
minutes. The closest PALM height of logged data to the height of operating wind turbines
in the Alpha Ventus is 100 m and the highest wind measurements at FINO1 met-mast is
90 m. WRF winds are also at 90 m for the sake of comparing with the wind measurements
(there is no LiDAR data available for this period). The time series of the wind speed
and direction shows good agreement against the observational data in Fig. 8.3a and b
(with a qualitatively better agreement between the PALM-calculated wind direction and
the measured wind direction, i.e. Fig. 8.3b). The discrepancies between WRF and PALM
results increase between 06:00 UTC and 13:00 UTC on 22 November 2015.

Figure 8.3: (a) Time series of wind speeds at the geographical location of FINO1 from
WRF (blue line), measurement from cup anemometer at 90 m (red line), and from the
WRF-PALM at 100 m (the closest recorded data from WRF-PALM to the hub-height is at
100 m and the maximum height of the wind sensor on FINO1 is 90 m in this figure); and
(b) the same plot as (a) but for the time series of wind direction during 22 November 2015.

To further verify quantitatively how the offline nesting can accurately predict the flow
field variability, the probability density prediction results of the wind speed and wind direction
at the geographical location of FINO1 are shown in Fig. 8.4. Our analyses are based on the
Kernel Density Estimation (KDE). The density of the predicted value of the WRF-PALM
wind information against the respective met-mast observations, in the child domain D05, is
more scattered almost for all winds with a correlation value of 0.51 as shown in Fig. 8.4a.
The KDE of WRF results at the FINO1 location indicates better agreement for the wind
speed (with a correlation value of 0.77). The KDE of the WRF-PALM wind direction shows,
however, a better agreement with observational data (with a correlation of 0.75 compared
with 0.63 in Fig. 8.4d). The marginal distributions in this figure further demonstrate that
the wind speeds have widely varying distribution modes in Fig. 8.4a, and the KDE method
in Fig. 8.4b agrees well with the probability distribution characteristics of the wind speed.

Based on comparing the SST and air temperature at 2 m, we can label the study period
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Figure 8.4: The Joint Probability Density (JPDF) of: (a) the PALM wind speed at 100
m height against the observational wind speed at 90 m height; (b) the WRF wind speed
at 90 m height against the observational wind speed at 90 m height; (c) the PALM wind
direction at 100 m height against the observational wind direction at 90 m height; and (d)
the WRF wind direction at 100 m height against the observational wind direction at 90 m
height.
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as the period of OCC events of varying strengths. If we assume the passage of the strongest
transient event, we can classify the variabilities of the wind speed into: (1) before the first
frontal passage (starting from 00:00 UTC on November 22 for 20min); and (2) the onset
of the first OCC event (starting from 01:40 UTC November 22 for 20min). We show in
Fig. 8.5 how the mesoscale offline nesting system predicts the variability of the wind speed
at height of 87.5 m (its magnitude and direction), and the spatiotemporal evolution of
turbines’ wakes before and during the passage of the main OCC event. Before the frontal
passage, the wind is almost northerly (i.e. Figs. 8.5a and b) which then rotating gradually
to the northwest (i.e. Fig. 8.5d) as the front enters into the farm region. It is observed
that the yaw control of turbines leads to wake meandering (we do not investigate how well
the modeled yawing results match with the observed SCADA data in this study).

Figure 8.5: Wind speed comparison of PALM model results at domain D05 at the times:
(a) before the main frontal passage; (b) close to the main OCC event but still before its
passage; (c) when OCC is entering into the study region; and (d) during the OCC event.
Within the PALM inner domain D05, we place 12 wind turbines (i.e. 5MW NREL turbines)
at geographical locations of the Alpha Ventus turbines.

We have also recorded high-frequency outputs (i.e. sampling frequency of 25 Hz) at
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spatially separated points covering the rotor area of a turbine in the first row of the Alpha
Ventus farm. This information can be used to study the non-Gaussian turbulence and
generation of the Gaussian and constraint turbulent winds using tools like NREL TurbSim
(Jonkman and Kilcher, 2012). Figure 8.6 shows the power spectra of the time series of
three velocity components at two different heights (27 m in the left panels and 97 m in
the right panels) respectively to examine how energy-containing and inertial subranges are
affected as a result of the frontal passage. The (slight) variability in the wind energy (for the
OCC cases) is observed across almost all frequencies, particularly close to the sea surface,
and we will conduct more in-depth analyses in the corresponding publication.

Figure 8.6: Comparisons of wind power spectra of three wind velocity components for the
pre-OCC and the OCC at FINO1 location at heights of 27m (a,c,e) and 97m (b,d,f) above
the surface.
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Using the time series of PALM at the constraint points as input, we can generate
stochastic winds by TurbSim on a 16×16 square grid with approximately 13 m width. The
model uses a high-frequency time series of wind, wave information, and the wind mean
profile. In Fig. 8.7, we generate two sets of wind fields before OCC (i.e. the PREOCC)
and during OCC (i.e. OCC) generated by the TurbSim simulator. We assume the same
decay parameters for both horizontal and vertical separation distances in the Davenport’s
TurbSim model.

Figure 8.7: Three-dimensional turbulent wind fields generated by the TurbSim constrained
by 30 vertical points at FINO1 during: (a,b,c) OCC event; and (d,e,f) PREOCC event.

We show tentatively in Fig. 8.8 the structural variability for a few quantities using the
wind inflows for PREOCC and OCC cases. We use NREL FAST model (Jonkman et al.,
2009) with a total temporal length of 600 s and a time step of 0.05 s. The first 200 s of
simulations are discarded (due to the model spin-up time). We demonstrate the response
spectra of ”OopDefl1” representing the instantaneous out-of-plane tip deflections of blade
1 relative to the undeflected pitch axis; ”BldPitch1” indicating the pitch angle of the first
blade; and the ”RotSpeed” representing the rotor speed. During the transient event, the
variation of the wind inflows relative to the rotor induces oscillations in the rotor speed.
The control system adjusts then the fluctuating power through the control of blade pitch
angle (i.e. Fig. 8.8b red line). Spectra are somewhat different at low frequencies. The
maximum OopDefl1 (of approximately 7 m) occurs when the wind speed declines during
the zero pitch angle condition.

8.3 Discussion
We generated mesoscale forcing for the PALM model from WRF hourly output, and tenta-
tively validated the model performance by a case study in the area of Alpha Ventus offshore
wind park and FINO1 met-mast. Specifically, we focused on the real OCC weather event.
Since the offline WRF-PALM nesting uses the non-cyclic boundary conditions, the inflow
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Figure 8.8: (a,c) Time series of turbine response from FASTv8 model; and (b,d) Power
Density Spectra (PSDs) of the out-of-plane tip deflections of blade 1 and the rotor speeds
before (PRECOCC) and during OCC events.

turbulence has been generated using a built-in Synthetic Turbulence Generator (STG) tool
(we can alternatively accelerate the generation of turbulence, if we consider a large parent
domain for the PALM to allow development of turbulence both in time and space). The
interval for the STG adjustment set to 30 s, and we called the module every second. Fur-
thermore, we set Rayleigh damping close to the top boundary to avoid/reduce propagation
of gravity waves into the study domain.

The modelling framework was stable and able to properly predict the flow fields (with a
satisfying agreement with respect to observations of wind speed and wind direction). We
further applied the wind turbine parameterization in the WRF-PALM to capture the spatial-
temporal variation of the wake produced by the wind turbines in the Alpha Ventus wind
park, especially during the OCC transition condition. We also generated high frequency
outputs of PALM model during OCC event and used NREL TurbSim software to generate
turbulence box to be used in the NREL FASTv8. Tentative results, for instance, indicated
that the turbulent fluxes during OCC event induced oscillations in the rotor speed.

9 Conclusions
In this report, we presented a multiscale modeling framework to simulate flow fields for
offshore wind energy applications under different atmospheric stability conditions. The
modelling systems had two model components: the mesoscale component downscales the
flow field from the global reanalysis data, and the microscale component further downscales
processes from the mesoscale component. The mesoscale component, with the core being
the WRF model, can be coupled with the ocean wave model in an online or offline mode.
The microscale component consists of an online nesting model, WRF-LES, and a standalone
offline nesting model, PALM. Both used the WRF output as the forced lateral boundary
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conditions.
For the mesoscale component, we conducted different experiment to examine the sen-

sitivity of the WRF to the simulation range and physics parameterization choices during
different events, specifically stable conditions during low-level jet events and an unstable
ones during the passage of convective cells. The verification against various observation
sources (including cup anemometers, LiDAR, SCADA) shows that our model design can
capture the key mesoscale processes. An optimal physics configuration is derived through
one of our sensitivity experiment.

We developed and applied two-way (online) coupling and one-way (offline) coupling of
ocean surface gravity waves with the multiscale modelling system. Comparing offline and
online wave coupled systems showed that the offline coupled system could produce better
results by considering the best physical configuration, especially during high wind speeds.

In order to reduce the site-specific uncertainty in wind predictions, we assimilated WRF
with the available LiDAR measurements through the observation nudging (during an LLJ
event). The results of the unnudged reference simulation and the nudged experiment
were compared with the LiDAR measurements in terms of spatiotemporal variations in the
wind speed and wind direction, as well as the vertical distribution of wind profiles at the
geographical location of FINO1. We further studied the spatial effects of observation on
the model simulation results. While the observation nudging could affect strongly the wind
speed and directions at mid and high altitudes, its effects are marginal near the surface layers
(this might be explained by either data availability as well as the reduced performance of
the model at near-surface levels). The approach can then be helpful in the reduction of
site-specific model uncertainty and for the resource assessment at certain heights relevant
to offshore wind energy applications. We investigated the impact of observation nudging
on the wind profiles during stable atmospheric stability conditions and the impacts might
be different in the case of unstable atmospheric stability conditions.

The microscale component is used to resolve the small-scale processes that cannot be
simulated using the mesoscale component, for example, the turbulent intensity and the
wake effect from wind turbines. The microscale component consists of WRF-LES using the
online nesting technique, and PALM with an offline nesting technique. Both LES strategies
are practically oriented with the realistic output from the WRF as the lateral boundary
forcing.

Although belonging to the same microscale component, WRF-LES and PALM have
different purposes in our model framework. The WRF-LES model aims at a seamlessly
downscaling from the mesoscale frameworks to a resolution of a few dozen meters, however,
the wind turbine effects are not included. We examined several dynamics options for the
WRF-LES and determined the suitable one for the simulation of turbulent intensity. To
solve the problem of under-developed turbulence, which is common in the LES nesting
strategy, we developed a fast and efficient cell perturbation method. The PALM model
can simulate the turbulence eddies even with a higher resolution of a few meters and with
turbine effects, however with a shorter duration. The PALM with realistic offline nesting
can nicely resolve the wake effects, not only from a single wind turbine, but their interaction
between multiple wind turbines in the FINO1 wind park.

In summary, we have developed a close model chain to seamlessly downscale the global-
scale atmospheric conditions to the wind turbine-scale processes. Through the conducted
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experiments, we gained a better understanding of key processes, OCC and LLJ, as well as
improved the model’s ability to simulate them. The gained knowledge provides guidance
for further study of wind energy applications in simulating wind conditions and in offshore
wind turbine design.
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D. Muñoz-Esparza, B. Kosović, J. Mirocha, and J. van Beeck. Bridging the transition from
mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer
Meteorol., 153(3):409–440, 2014.
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