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1. Executive Summary 
 

Central to the HIPERWIND project is the inclusion of probabilistic design concepts into the design of 

offshore wind turbine models. These can require large amounts of aero-servo-elastic (ASE) simulations, 

thus incurring significant computational loads, often intractable with currently available computational 

resources. To overcome these limitations, WP4.1 is tasked with the design and development of novel 

surrogate modelling approaches that can deal with the extremely high input- and output- 

dimensionalities typical of ASE simulations, while retaining acceptable accuracy. 

WP4.1 develops two complementary surrogate modelling approaches that can handle and accelerate 

high-dimensional ASE simulations: 

● A full wind-box-input to time-series-output surrogate based on the combination of 

dimensionality reduction and autoregressive modelling developed by ETH Zurich 

● A stochastic simulator based on Bayesian Neural Networks, predicting time-aggregated load 

quantities while taking into account model and realization-to-realization uncertainty – 

developed by DTU.  

 

The performance of each surrogate model is benchmarked on an exhaustive database of simulations 

based on the load cases identified in D1.2, for a number of output quantities of interest (QoIs) and 

different error measures.  

The surrogates presented provide an adequate to excellent approximation of their ASE counterparts, 

with computational savings of several orders of magnitude, and acceptable modelling errors. As a result, 

these approaches represent a substantial new asset in the probabilistic design toolchain as they enable 

large-scale and uncertainty-aware wind turbine design studies.   
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2. Introduction 
 

2.1. General context 
 

The HIPERWIND project (HIghly advanced Probabilistic design and Enhanced Reliability methods for 

high-value, cost efficient offshore WIND) aims at reducing the levelized cost of energy (LCOE) through 

a three-pronged approach: 

● by using measured data and advanced physics-based models to improve the probabilistic 

modelling of environmental conditions and flow on offshore wind-farms 

● by using these probabilistic models in conjunction with advanced computational models to 

reduce uncertainty on turbine structure, component reliability and maintenance requirements 

● by deploying both of these, explore turbine designs that both reduce LCOE and increase the 

system value of wind. 

The HIPERWind project comprises five Specific Objectives, summarised in Figure 1, each outlining a 

clearly defined work–package (WP) within the project. 

 
Figure 1: the HIPERWind work-package structure. 

 

● WP2 focuses on the improved probabilistic modelling of the environmental conditions that 

affect offshore wind farm design and operation, reducing uncertainty in environmental 

exposure. 

● WP3 develops novel load assessment methods for large offshore fixed bottom- and floating- 

wind turbines, reducing uncertainty in load assessment. 

● WP4 develops an efficient framework for the consistent probabilistic assessment of the 

reliability of offshore turbines, hence enabling full probabilistic design approaches. 

● WP5 deals with the longer term modelling of wind turbine degradation, enabling the reduction 

of expected maintenance costs. 

● WP6 provides recommendations based on the outcome of the previous WPs to significantly 

reduce LCOE and improve the market value of offshore wind energy. 
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We focus here on WP4, and on the challenges related to the probabilistic reliability assessment of 

complex offshore wind turbines. 

 

 

2.2. Scope of the work and objectives 
 

This work is performed in the context of WP4, Task 4.1: Surrogate models with high-dimensional input 

and outputs, led by ETH Zurich, with the participation of DTU. Deliverable contents and measures of 

success are defined in the following extract from the official SMART deliverable 4.1: 

Specific targets:  

● Develop a Kriging-based surrogate model which receives turbulent wind inputs and provides load 

time series outputs including model uncertainty estimates. 

● Develop a neural-network based surrogate model with 10-minute load statistics as output, trained 

with Bayesian inference so that the model parameter uncertainty can be estimated. 

● Test and report the efficiency of the surrogate models developed, in terms of their performance 

on predicting the probability distributions of fatigue damage and extreme loads for selected load 

cases provided from WP1 

Measure of success:  

● Surrogate modelling approaches are developed and have at least one order of magnitude better 

computational efficiency than the original aeroelastic modelling tool 

● Surrogate model uncertainty is not greater than the turbulence-induced statistical uncertainty 

(seed-to-seed uncertainty) 

Participant actions: 

● Partner A (ETH, LEAD): Develop and evaluate the performance of a Kriging-based surrogate 

model. Collect results for deliverable report.  

● Partner B (DTU): Develop and evaluate the performance of a Neural-Network based surrogate 

model for predicting loads and power production on major structures in fixed base wind farms. 

Provide load simulation and turbulence input time series to ETH for surrogate model training 

purposes. 

 

Because of the independent nature of the work performed by the two partners ETH and DTU, this 

document includes the report from the two independently developed surrogate modelling techniques as 

two separate sections, starting from the contribution from ETH. Nevertheless, each section will follow 

a similar structure, where the problem is first stated, including the description of the reference ASE 

model considered, the accurate description of the input/output quantities considered, performance 

metrics, etc., followed by a detailed validation and benchmarking of the proposed methodology. 
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3. Surrogate modelling of high-dimensional input/output 

time-series (ETH)  
 

3.1. Problem statement and definitions 
 

From a purely mathematical/abstract viewpoint, every aero-servo-elastic simulation of a specific wind 

turbine subject to a wind excitation can be abstracted as a generic function (or model M ) of the form: 

 ( ) ( ( ))t t y xM  (1) 

where  1( ) ( ), , ( )YNt y t y ty  represents a set of time-dependent output quantities of interest (QoIs, 

e.g. rotor speed, power output, loads, etc.), and  1( ) ( ), , ( )XNt x t x tx  is a set of input time-series 

that may represent both the environmental conditions (e.g. wind speed at different coordinates, wave 

height, etc.), and the state of the wind-turbine itself (e.g. orientation, physical properties, etc). The 

notation •( )t  indicates that the time-dependent variable •  is considered for times smaller or equal 

than t . In this representation, the time-dependent set of model responses ( )ty  is deterministic, i.e. 

evaluating the model M  on the same set of input time series 
*( )tx  will result in an identical 

response 
*( )ty . 

Due to their inherently stochastic nature, it is often necessary to consider several realizations of the 

random environmental conditions. To reduce the associated computational burden, we introduce here 

the concept of surrogate models. Following the same notation as in Eq. (1), we can describe a surrogate 

model as a mathematical function M  such that: 

            ( ) ( ( )) ( ( ))t t t   y x xM M      (2) 

Surrogate models are cheap-to-evaluate functions, that are trained on a training set of time series of size 

EDN  known as the experimental design ED( )(1){ ( ), , ( )}Nt t x xX  so as to maximize accuracy of the 

approximation in Eq. (2) according to some suitable error measure. 

While surrogate models are very common in a number of fields of applied science and engineering, the 

construction of surrogates for complex ASE simulations with high dimensional inputs and outputs is as 

of today a largely unexplored topic. 

Our goal is to present here a novel general class of surrogate models that can achieve the approximation 

in Eq. (2) under the following conditions: 

 ( ) { ( ), ( )}t t tx V z  includes both the wind excitation to which a wind turbine is exposed (

( )tV ), and an additional set of state variables ( ( )tz ) that can affect the turbine (e.g. wave 

height in offshore turbines, pitch angle if available, etc.). In practical computations, ( )tV  is a 

set of three three-dimensional turbulence boxes discretized both in space and in time, where 

each turbulence box corresponds to one of the wind speed components (longitudinal, transverse 

and upwards) with respect to the turbine. Typically, each wind field is discretized into 
2 3(10 )O  nodes along the spatial coordinates, and 

4 5(10 )O  along the time axis for a 

simulation length of 10 minutes. 
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 ( )ty  represents a vector of output quantities of interest, each discretized along the time 

similarly to the input coordinates ( )tx . 

 The size of the training set EDN  is maintained manageable in the order of 
2 3(10 )O  full ASE 

simulations. 

 The surrogate is entirely non-intrusive and data-driven, i.e. no assumptions are made nor 

knowledge is required about the specific modelling strategy employed to generate the training 

set. 

The last condition adds an important value to the development of this deliverable. In addition to the 

obvious direct benefits coming from the significant reduction in required computational resources, the 

availability of a surrogate model can enable different beneficiaries of the HIPERWIND consortium to 

run calculations without the need to exchange possibly confidential and/or sensitive information, such 

as computational models.  

 

 

3.2. Validation strategy 
 

Regardless of the specific technology employed to achieve a surrogate of the form of Eq. (2), its 

performance needs to be tested on a validation pool of simulations that thoroughly explores the expected 

environmental conditions considered during the surrogate lifetime. To this end we performed an 

extensive benchmark study on a model of a standardized wind turbine, with a well-known stack of 

environmental modelling and ASE simulation technologies. A detailed description of the specific model 

is given in Section3.3. 

We validate the performance of the surrogates using extensive data sets with a total of about 2,000 

simulations from different climate scenarios (normal turbulence model (NTM), extreme turbulence 

model (ETM), extreme operating gust (EOG)), as well as with different random seeds for the generation 

of the input wind boxes. A detailed description of all the validation sets employed in this study is 

provided in Section 3.5.1. 

For each of the considered wind climate scenarios, a number of different output quantities of interest is 

benchmarked separately, in fact amounting to a different surrogate model for each. They are described 

in detail in Section 3.3.2. 

Validation is performed at different levels, depending on the specific quantity (e.g. state variables or 

loads) and wind climate scenario considered, in Section 3.5.3. Whenever possible, a comparison 

between surrogate-model-induced uncertainty vs. seed-to-seed uncertainty is also performed. Several 

different error measures, as well as illustrative plots are described in detail in Section 3.5.2. 
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3.3. Computational model: the NREL 5MW reference turbine 
 

3.3.1. Description of the wind turbine 
 

Due to the unavailability of an offshore turbine model and corresponding simulator codes, as well as 

the need of a clear probabilistic description of wave conditions, the surrogate model documented in this 

report was developed and validated on the well-known NREL 5-MW baseline wind turbine (Jonkman, 

et al., 2009). The turbine model was used with NREL’s ROSCO (Reference Open-Source Controller 

(NREL, 2021) and simulated in the open-source ASE simulator OpenFAST (NREL, 2021) as described 

in Section 3.3.4.  

Since the surrogate modelling approach does not depend strictly on the wind turbine characteristics, but 

rather aims to learn the dynamics of the turbine from simulation data, it is expected that its performance 

on offshore turbines would be comparable, as long as sufficient information about the wave loads is 

provided. A summary of the NREL 5MW reference turbine properties is given in Table 1.  

Table 1: Properties of the NREL 5-MW baseline wind turbine 

Rating 5 MW 

Rotor Orientation, Configuration  Upwind, 3 Blades  

Control  Variable Speed, Collective Pitch  

Drivetrain  High Speed, Multiple-Stage Gearbox  

Rotor, Hub Diameter  126 m, 3 m  

Hub Height  90 m  

Cut-In, Rated, Cut-Out Wind Speed  3 m/s, 11.4 m/s, 25 m/s  

Cut-In, Rated Rotor Speed  6.9 rpm, 12.1 rpm  

 

 

3.3.2. Output quantities of interest 
 

The quantities of interest (QoIs) for the development and validation of the surrogate modelling approach 

are selected based on standard wind turbine design practices, as well as on the needs of ultimate and 

fatigue limit state estimation. A complete list of the QoIs included, as well as the acronyms used in this 

report, are given in Table 2. 

 

Table 2: List of the quantities of interest under consideration 

QoI Acronym 

Blade pitch  ( )t  

Rotor speed ( )t  

Electrical power ( )P t  

Flapwise blade root 

bending moment 

Bld ( )yM t  

 

Note that we explicitly highlight the time-dependent behavior of the quantities of interest, as our goal 

is to provide a surrogate model of the transient response of each quantity. 
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3.3.3. Wind box generation and discretization (TurbSim) 
 

Turbulent wind was generated using the open-source stochastic turbulence simulator TurbSim 

(Jonkman, 2009), which constructs random turbulent wind fields from a given spectral and spatial 

coherence model. Following the IEC61400-1 design standard (IEC, 2019), we used the Kaimal 

spectrum in conjunction with an exponential coherence model. This provides a temporally coherent 

wind in the longitudinal ( ( )x tV ), transverse ( ( )y tV ), and vertical ( ( )z tV ) directions. Spatial 

coherence, however, is only enforced in the longitudinal wind direction. TurbSim does not directly 

include wind shear in the turbulence generation, but it superimposes it subsequently directly on the 

generated turbulence box. 

A turbulence box by TurbSim consists of the three 3-dimensional wind speed matrices, xV , yV and zV

. Each matrix is discretized along the horizontal and vertical spatial dimensions with the indices   and 

, as well as along the temporal dimension t . Each 2-dimensional slice of a wind speed matrix at a 

given time discrete time ,t a t a  ,  e.g. ( )x tV , is discretized into a grid 19 x 19  elements 

, ( )V t
, resulting in 361 data points per time step. The turbulence box is discretized with a sampling 

frequency of 20 Hz, which corresponds to a time step of 0.05 s. For a 10-minute wind box, this results 

in 
6(10 )O data points for each wind speed matrix and  

7(10 )O data points for the full wind box. 

 

3.3.4. AES modelling (OpenFast) 
 

To perform AES simulations, we adopted the publicly available open-source aero-servo elastic 

simulator OpenFAST (NREL, 2021) to train and validate the proposed surrogate modelling approach. 

OpenFAST uses InflowWind (Platt, et al., 2016), a module for processing wind inflow data to obtain 

local wind speeds. The local wind speeds are obtained using Taylor's frozen turbulence hypothesis and 

spatial and temporal interpolation. The time step of the QoIs output by OpenFAST is 0.00625sdt  , 

which corresponds to a sampling frequency of 160 Hz. In other words, the turbulence box produced by 

TurbSim (see previous section) is re-interpolated to a higher sampling frequency of 160 Hz for 

numerical stability reasons. Spatial discretization is unchanged. 

 

 

3.4. Surrogate modelling strategy 
 

3.4.1. Overview 
 

We propose a novel surrogate modelling method that takes advantage of the space- and time- coherence 

of the high dimensional input wind box, and the output time-dependent QoIs. While we re-use existing 

technology, such as the spectral representation of spatial variability and autoregressive models, the use 

of these techniques in a surrogate modeling chain to predict the response to entirely out-of-sample 

turbulence-boxes is completely original. 

The overall surrogate modelling algorithm can be in short described as follows (see Figure 2): 
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1. Reduce the spatial dimensionality of the input turbulence boxes by projecting them on a low-

dimensional space ( )tξ  that is suitable for surrogate modelling. This can be achieved e.g. 

through principal component analysis (PCA) or spectral decomposition (discrete cosine 

transform) of each spatially coherent 2D timeframe of ( )tV . Additional time-dependent time-

series related to the environmental/wind conditions (e.g. wave height) can also be included in 

( )tξ . 

2. Train an auto-regressive with exogenous input model (NARX) on the low dimensional features 

from an available training set (experimental design) for those QoIs that are only dependent on 

the ( )tξ  (e.g. pitch angle and in some cases rotor speed). 

3. Predict any intermediate quantities that are needed for the emulation of the remaining quantities 

of interest: pitch angle, blade speed, blade position, etc. (see Section 3.3.2). Combine this new 

set of additional quantities with ( )tξ  into a manifold ( )tζ  of manageable dimension. 

4. Train a NARX model of each QoI on ( )tζ . 

 

 

Figure 2: Graphical representation of the proposed mNARX surrogate modelling algorithm. 

 

This approach results in a family of NARX surrogates that can be efficiently run sequentially to provide 

out-of-sample predictions on completely new (unseen) turbulence-boxes. Because at the core of this 

strategy lies the construction of a low dimensional manifold suitable for NARX modelling, we name 

this method mNARX. An interesting aspect of this approach is that the actual manifold used for each 

output QoI may contain additional information w.r.t. that contained in the input turbulence boxes, due 

to the highly non-linear transform of the raw input features ( )tx  that the auxiliary NARX surrogates 

imply. This is particularly important in the context of a NARX, which in general fails to perform when 

the output QoIs contain higher frequencies than the exogenous inputs. 

In the following sections, each of the steps necessary to construct and train an mNARX surrogate is 

described in more detail. 
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3.4.2. mNARX: a chain of surrogate models 
 

A crucial aspect of the proposed method is the construction of a proper input manifold for each quantity 

of interest. The manifold itself is obtained as a non-linear transform of the input time-series through a 

sequence of autoregressive models of intermediate quantities. The manifold itself has in principle lower 

dimensionality than the raw input turbulence box, and is composed of a number of different features. 

These features may both include a subset of the raw inputs (e.g. their spectral components), but they 

may also include additional properties that are not part of it, e.g. higher frequency harmonics or other 

non-linear transforms.  

Albeit at first sight counter-intuitive, this is a direct consequence of the physics of a wind turbine 

system: the frequency content of the input turbulence boxes naturally affects that of the output QoIs 

from the wind turbine. However, the wind turbine consists of several moving parts and a control system, 

which may result in cyclic behaviour at frequencies much higher (and lower) than those typical of wind 

variation. Perhaps the simplest example of this behaviour would be that of a turbine under a constant 

breeze: while the turbulence box would remain fixed in both time and space, the loads on the wind 

turbine elements would exhibit a cyclic behaviour at frequencies related to the rotor speed, as well as 

to the number of blades on the turbine (e.g. due to tower shadowing effects from the blades). A more 

relevant example is provided in Figure 3, where we show the magnitude spectrum of a single turbulence 

box for the central node 
(10,10) ( )x tV  (see Section 3.3.3 for more details).  

As expected from a Kaimal model, input wind power decays rapidly with frequency, and most of its 

energy is contained at frequencies well below 1 Hz. Similarly, the power spectrum of the rotor speed

  decays fast, but shows a peak at about 4 Hz.  This behaviour is even more evident for 
Bld ( )yM t , the 

power spectrum of which remains essentially constant between 0.2 and 1 Hz, and exhibits a strong peak 

at about 2 Hz. 

The input manifold ( )tζ  of the mNARX surrogate for each QoI is therefore a combination of the 

turbulence box parameters ( )tV , and other derived quantities, typically other QoIs that have been 

surrogated at an earlier stage. This hierarchical construction results therefore in a chain (or sequence) 

of surrogates that may depend on each other. An overview of the cross-dependencies between the 

surrogates of various QoIs is provided in Table 3. 

 

Figure 3:  Magnitude spectrum of wind speed trace at hub position, 
(10,10) ( )x tV , the rotor speed, 

( )t , and the flapwise blade root moment, 
Bld ( )yM t . 
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Table 3: Surrogate modelling dependency chain 

QoI (Symbol) Input manifold components 

Pitch angle ( ( )t ) ( )tV  

Rotor speed ( ( )t ) ( )tV , ( )t  

Azimuth ( ( )i t ) ( )t  

Azimuth harmonics1 ( ( )k

i t ) ( )i t  

Electrical power ( ( )P t ) ( )tV , ( )t  

Blade root flapwise moment (
Bld ( )yM t ) ( )tV , ( )t , ( )k

i t  

 

 

3.4.3. Spatial dependence: spectral compression 
 

According to Eq. (2), the chain of surrogate models ( ) ( ( ))t t y xM  is a function of the (in general 

time-dependent) environmental and structural parameters contained in ( )tx . As described in Section 

3.4.2, however, each QoI ˆ ( )iy t  may depend on a quantity-specific set of input parameters (Table 3). 

For notational simplicity, we will now focus on a single output QoI at a time, making their dependence 

on the input parameters explicit as follows:   

 ˆ ˆ( ) ( ( ), ( ))ii iy t t t  x yM , (3) 

where ( )tx  is the input time series that describes the time dependent environmental conditions and state 

variables, and ( )i ty is a set of QoIs that have been surrogated prior to ˆ ( )iy t  as described in Section 

3.4.2.  

Because of its high dimensionality, we focus in this section on the ( )tV  component of ( )tx , or the 

input turbulence box (see Section 3.3.3). As described in Section 3.3.3, it is typically discretized as 

three three-dimensional matrices ( ), ( )x yt tV V  and ( )z tV , each with a dimensionality in the order of 

2 3(10 )O . Among the three components, by far the dominant one for most QoIs is the longitudinal 

component  

( )x tV , which is also the only one that exhibits spatial coherence by construction. Because with our 

specific model configuration (Section 3.3) wind is aligned with the turbine and the other two 

components are much less significant and have no coherence (white noise), we discard them from the 

pool of input features. In the general case, all components can in principle be considered. 

To be able to use advanced surrogate modelling techniques, and NARX models in particular, we need 

to reduce the dimensionality of ( )x tV , and to achieve this we capitalize on its spatial coherence 

(smoothness). There are many approaches available to this end (e.g. principal component analysis, 

wavelet transforms, etc.), and for this application of mNARX we choose to project ( )x tV  on a truncated 

discrete cosine basis. In other words, at any timestep t in the discretized turbulence box, we project the 

                                                      
1 E.g. sin( ( ))ik t  
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two-dimensional matrix of longitudinal wind speeds ( )x tV  into its truncated 2D discrete cosine 

transform (DCT) coefficients ( )tξ :  

 
1 1

1 1
( ) ( )cos cos

2 2

ji
nn

x ij

i j i j

V t t i j
n n

  
 

 

     
       

       
 ,  (4) 

where   and  are the indices of the discretized turbulence box along the x  and y  directions (see 

Section 3.3.3), i xn n  and j yn n  are the number of discretization nodes along the x  and y

directions, respectively, and ( )ij t   are the DCT coefficients. The invertible DCT transform allows 

us to map xV  to ξ  and vice versa. 

Due to the physics of the system, it is expected that only the low spatial frequency modes of ( )tξ  in Eq. 

(4) directly affect the wind turbine response. The expansion is therefore truncated, typically by setting 

4i jn n  , hence yielding a total number of coefficients in the order (10)O , down from the original 

2 3(10 )O  of xV . A visual comparison of a raw 2D wind velocity profile and the effects of this low-

pass filtering compression is provided in Figure 4. 

 

Figure 4: Original vs reconstructed wind field after truncating its spectral representation to the first 

16 ( 4)i jn n   modes only. Left: original 2D turbulence box slice, middle: 2D discrete cosine 

transform coefficients (coefficients kept after the truncation are highlighted by a black square), right: 

reconstructed turbulence box slice after truncation. 

 

After this compression step of the spatially dependent ( )x tV , the total number of the input manifold 

features is in the order of 4-25, depending on the specific QoI being surrogated, and can be handled by 

standard auto-regressive modelling methods. More explicitly, the full input manifold can be written as: 

  ( ) ( ), ( ), ( )it t t tζ ξ z y . (5) 

For notational simplicity, we omit here and in the following an explicit reference to the QoI index i  on 

the input manifold ( )tζ , but it is clear from Eq. (5) that it is actually on the specific QoI being 

surrogated: in general different QoIs will be constructed on different manifolds (see also Section 3.4.2). 
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3.4.4. Time dependence: NARX 
 

Once the time-dependent input manifold ( )tζ  is constructed, it can be used within a standard NARX 

modelling framework. In short, we consider an autoregressive model of the following form: 

 ˆ ˆ( ) ( ( ), ( ))i iy t t y t t t     ζM  (6) 

where t  is a small time-increment, which corresponds to the time discretization step in our case. In 

other words, given an incremental timestep t , the output quantity of interest ˆ ( )iy t t  is predicted 

based on its own value predicted until time t  (auto-regressive component), and the input manifold ( )tζ  

until time t t  (exogenous input component).  

In practical NARX applications, the system is assumed to have finite memory, which means that instead 

of the full set of autoregressive time-series, only a small subset is considered. This subset is often 

parameterized in terms of the number of lags considered for each quantity. Each lag is normally an 

integer multiple of the time discretization interval t , or ,i k t k  , which leads us to rewrite 

Eq. (6) explicitly as: 

  1 1
ˆ ˆ ˆ ˆ( ) ( ), ( ), , ( ), ( ), ( ), ( ), , ( )

y

y y

i i i i n ny t t y t y t y t t t t t t


        ζ ζ ζ ζM , (7) 

where 
y

 and 


 are the lags along iy  and  (to avoid notational overcrowding we drop the i  indices 

on all instances of , but in principle they are QoI-dependent), and yn  and n  are the total number of 

lags considered for iy  and  , respectively. 

The formulation in Eq. (7) is very general, and it allows for significant freedom: lags can be of different 

lengths, and they can be different between the autoregressive and the exogenous input components. 

This is important, because of the multi-modal frequency response spectrum of wind turbine simulations, 

which requires both short-term lags to reproduce high-frequency behaviour, and long-term lags for its 

corresponding low-frequency counterpart. 

Numerous approaches are available in the literature to construct autoregressive models in the form of 

Eq. (7), and in this work we use a classic polynomial model available as described in (Billings, 2013, 

pp. 35-36). For the sake of simplicity, we operate on both input and output time series at the same 

sampling frequency as the AES simulator of 160 Hz   (for more detail, see Section 3.3.4). In this 

setting, the parameters of the mNARX surrogate are summarized in the following table: 

Table 4: Configuration parameters of the mNARX surrogate 

Parameter Description 

Polynomial degree d  Maximum polynomial order to be considered in the NARX surrogate 

Maximum interaction r  Maximum interaction order considered in the polynomial regressor 

 1 , ,
y

y y

n  List of the auto-regressive lags 
y

 

 1 , , n

 
 List of the exogenous input lags 


 

( )tζ  Definition of the input manifold, including the auxiliary QoIs and the 

frequency truncation strategy for ( )x tV (see Table 3). 
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The final complexity of the mNARX model depends of course on the parameters in Table 4, because 

they uniquely determine the number of unknown coefficients that must be inferred from the training 

set. 

 

3.4.5. Wind regimes and classification (low/high wind speed regimes) 
 

A wind turbine has several mechanisms to operate optimally under a variety of wind conditions, one of 

which is the controller-driven variable pitch angle. The pitch angle drastically affects the turbine's 

dynamic response to the wind. This is accounted for by predicting the pitch angle as an intermediate 

quantity and using it as an additional exogenous input for predict other variables, such as loads. 

However, it was found that the performance of the proposed surrogate modelling approach is 

significantly improved when the problem is divided into low and high wind speed regimes. We propose 

a simple classification based on the rated wind speed of the turbine and the average wind speed of a 

wind field at hub height hubV . The low wind speed regime includes wind fields with hubV  less than the 

rated wind speed of 11.4 m/s and the high wind speed regime includes wind fields with hubV  greater 

than or equal to the rated wind speed. For either regime a separate surrogate is constructed. New 

turbulence boxes are first classified according to this simple property and then evaluated with the 

corresponding surrogate. 

 

 

3.4.6. Training strategy 
 

With Eq. (7), we introduced a general formulation of a NARX model in which at each future time step 

t t , the predicted output ˆ ( )iy t t of the NARX model is a function of an exogenous input  

( )t t ζ and past predictions ˆ ( )iy t . Subsequently, we refer to the full input vector at a time step 

 , consisting of both the exogenous input and the past prediction, as 
( )j

φ , where the superscript j  

refers to the j  th simulation in the experimental design: 

.  (8) 

For the same time step  and simulation j , we write the true output as  ( ) ( ) ( )j j

iy y t t   . Note 

that we omit the subscript i  hereafter to avoid overcrowding of the notation.  

We then model the approximate response ( )M  as a multivariate polynomial on the components of 

the input vector φ , whose coefficients are to be determined from the available training set. 

Let α  be an integer multi-index belonging to the set:   

1 1

( )

ˆ ˆ ˆ ˆ( ) ( ), ( ), , ( ), ( ), ( ), ( ), , ( )
y

y y

i i i i n n

j

y t t y t y t y t t t t t t


  



 
       

 
ζ ζ ζ ζ

φ

M



 

19 

 

     , ,

1 0
:M d r d r    α A , (9) 

where M  is the number of components of the input vector φ , d  is the maximum degree of the 

multivariate polynomial and r  is the maximum interaction order, while •
p

 is the p  norm operator. 

For every multi-index α  we then define a multivariate polynomial ( )α τφP  as: 

 ,
1

( ) ( ) i

M

i
i



 


α φP . (10) 

Given  Eq. (10), we can explicitly rewrite Eq. (8) as: 

  

 
, ,

( ) ( )
M d r

c 


  α α
α

φ φ
A

M P , (11) 

Where the cα  are a set of real polynomial coefficients, which for convenience we gather in a vector 

 , ,, M d rc αc α
ú

A . From Eq. (11) it becomes clear that training the surrogate corresponds to 

determining the matrix of polynomial coefficients c , which we achieve by ordinary-least-squares 

(OLS) regression. We construct a regression matrix ψ , which contains the samples from all time steps 

and of the full experimental design: 

  
0 max 0 max

( ) ( )(1) (1), , , , , ,ED EDN N

   ψ
ú úú ú ú

P P P P . (12) 

Similarly, we also gather the output vector y  as: 

  
0 max 0 max

( ) ( )(1) (1), , , , , ,ED EDN Ny y y y   y
ú

. (13) 

Using ψ and y , the regression problem can then be written as a linear system y ψc , where c  is a 

coefficient vector. We solve this linear regression problem by least squares minimization analytically 

simply as: 

  
1

c ψ ψ ψ y
ú ú

. (14) 

In our problem, we have 
2(10 )EDN O  simulations in the experimental design, with 

5(10 )O  time 

steps per simulation,  making it impractical to solve Eq. (14). Therefore, we use only a random subset 

of the input matrix S Rψ ψ  and the corresponding output vector RSy y . The size of the random 

subset SN  depends on the number of coefficients, and we choose 20 | |SN   c ,  to ensure proper 

conditioning in the matrix inversion in Eq. (14).  

 

3.5. Surrogate model performance 
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This section provides an extensive analysis of the performance of the surrogate modelling chain 

described in Section 3.4 on several validation sets that span varying climate conditions, from nominal 

operation to wind gusts, and provides an estimate of the modelling error introduced by the surrogate at 

different levels. 

3.5.1. Training and validation sets 
 

To benchmark the proposed surrogate modelling strategy just introduced, we consider three different 

wind condition scenarios identified in the IEC 61400-1 design standard: normal turbulence model 

(NTM), extreme turbulence model (ETM), and extreme operating gust (EOG). The following sections 

describe the construction of the turbulent wind datasets for each scenario, and list the number of random 

input vectors and random seeds used for the performed simulations. An overview of all datasets used 

can be found in Table 5. 

Normal turbulence model 

The wind climate parameters were chosen in accordance with the IEC 61400-1 design standard. 

Consequently, two random variables are defined, namely the mean wind speed at hub height hubV , which 

follows a Rayleigh distribution, and the turbulence standard deviation 1 , which follows a Weibull 

distribution and is conditioned on hubV . Sets of random variables with hubV  below cut-in wind speed (3 

m/s) or above cut-out wind speed (25 m/s) were discarded. 

Two datasets were generated for the NTM scenario, subsequently referred to as the standard dataset 

(SD) and the replication dataset (RD). In the SD each wind field is constructed on a random input vector 

with a unique random seed different from all others in the dataset. In the RD, multiple wind fields are 

generated with different random seeds for the same realization of the input random vector of wind 

parameters. To create the SD, 1,200 simulations were run, of which 1,108 were between cut-in and cut-

out wind speed and 903 completed successfully. The RD is based on 720 simulations, of which 660 

were within the wind speed bounds and 558 completed successfully. These 720 simulations were based 

on random turbulent wind fields generated from 24 input vectors and 30 random seeds for each input 

vector. 

Extreme turbulence model 

For the ETM the design standard defines hubV  as a random variable, while 1  is a deterministic value 

depending on hubV . Only random input vectors with hubV  between cut-in and cut-out wind speed were 

considered. 

Similar to the NTM scenario, a SD and RD were created. To create the SD, 240 simulations were run, 

of which 223 were between cut-in and cut-out wind speed and 182 were completed. The RD is based 

on wind fields from 24 random input vectors and 30 seeds, resulting in 720 simulations, of which 690 

had valid wind speeds and 568 completed.  

Extreme operating gust 

In the EOG scenario, gusts were generated according to the IEC 61400-1 standard for hubV  in the range 

of 5-25 m/s in steps of 2 m/s. Each gust profile was centred around zero wind speed and superimposed 

on a random turbulent wind field generated from the corresponding hubV  and a fixed turbulence standard 

deviation 1 0.1  . An exemplary turbulent wind speed trace at hub position (10,10)xV  with a gust 
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superimposed is shown in Figure 5.  For each hubV , turbulent wind fields were generated from a set of 

30 random seeds, resulting in a total of 330 simulations, of which 189 were completed. In this scenario, 

all simulations with hubV larger than 19 m/s aborted. This is not unexpected, because of the lack of a 

proper turbine shutdown mechanic in the OpenFAST controller implementation. 

 

Figure 5: Turbulent wind trace at hub position with an extreme operating gust between 455 and 465 

s. 

Table 5: Summary of datasets (normal turbulence model, NTM; extreme turbulence model, ETM; 

extreme operating gust (EOG)) 

Wind 

conditions 

Dataset Number of 

input vectors 

Number of 

random seeds 

Number of simulations 

(completed/within wind 

speed bounds/conducted) 

NTM SD 1200 1 903/1108/1200 

NTM RD 24 30 558/660/720 

ETM SD 240 1 182/223/240 

ETM RD 24 30 568/690/720 

EOG - 11 30 189/330/330 

 

Training set 

As described in Section 3.4.5, we build two separate surrogate models at low- and high- wind speeds 

for each QoI, and we seamlessly integrate them through a simple classifier on hubV . For each regime a 

surrogate was trained on a total of 100 ASE simulations. The simulations were randomly selected from 

the valid simulations (wind speed according to classification) across all seven data sets listed in Table 

5. With a simulated time of 10 min and a sampling frequency of 160 Hz, this results in 
7(10 )O  time 

steps for the full training set. Because the surrogate only requires 
2 3(10 )O  hyperparameters to be 

fitted, and due to the temporal coherence of both input and output time series, only a random subset of 
5 6(10 )O  time steps was used to train the surrogate. The composition of the training set is provided in 

Table 6. 

 

Validation set 

The validation of the mNARX approach was performed with the simulations that remained after the 

selection of the training sets for the low and high wind speed regime surrogates. Consequently, all 
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simulations presented in our benchmark study (Section 3.5.1) are out-of-sample. The composition of 

the validation data is given in Table 6. 

Table 6: Composition of training and validation sets 

Wind 

conditions 

Dataset Number of simulations in 

training set 

Number of simulations in 

validation set 

low wind 

speed regime 

high wind 

speed 

regime 

low wind 

speed regime 

high wind 

speed regime 

NTM SD 41 35 549 278 

NTM RD 29 22 329 178 

ETM SD 9 5 112 56 

ETM RD 11 31 419 107 

EOG - 10 7 85 87 

 

 

3.5.2. Validation analysis: error plots and error measures 
 

Due to the underlying physics, different QoIs can have very different spectral characteristics. Most 

exhibit strong periodicity due to the rotation of the rotor, in conjunction with wind shear. As a result, 

many QoIs depend on the state of the wind turbine at any given instant.  

To address this dependence, we introduced the concept of a surrogate modelling chain as a multilevel 

approach in Section 3.4. However, errors in the wind turbine state, especially rotor speed and the derived 

rotor orientation, lead to phase mismatch between actual and predicted outputs. Common time series 

error measures, such as the root mean square error (RMSE), penalize this phase mismatch and result in 

errors that do not well represent the performance of the surrogate in emulating the dynamic turbine 

response. Therefore, RMSE is used only for auxiliary QoIs that do not depend directly on rotor 

orientation, such as pitch angle or rotor speed.  

For the primary QoIs, aggregate quantities common in the wind turbine design process are used instead 

as meaningful error measures. We focus in particular the peak load values, damage equivalent load 

(DEL):  

 
1

1 A mN
life i i

m

isim eq eq

T n A
DEL

T N N

  , (15) 

with 20lifeT   years, 10simT   min, 
710eqN  and 10m   for the blades, or the integrated energy 

production over a ten-minute interval (E): 

 
0

( )
simT

E P t dt   (16) 

 with 10simT   min. 

A complete list of aggregated quantities used for each QoI is provided in Table 2.  
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As described in Section 3.5.1, we use two different types of dataset: a standard dataset with no repeating 

vectors of wind-climate conditions and only unique random seeds on the one hand, and replicate 

datasets where each dataset is used repeatedly with different random seeds on the other hand. We use 

the standard dataset (SD) to evaluate the overall accuracy of the mNARX approach, and the replication 

dataset (RD) to compare the error introduced by the surrogate with the uncertainty associated with the 

stochasticity of the wind fields, commonly known as seed-to-seed uncertainty.  

To represent the results obtained from the standard dataset, we use scatter plots of scalar values 

aggregated from the full output time series whenever possible. The comparison of the aggregated value 

from the predicted time series with the value from the true output time series provides a general 

overview of the performance of the surrogate. For each scatter plot, we highlight with a red and a green 

circle data points that correspond to bad and good predictions, respectively. We also show the 

corresponding true and predicted QoI time series. In addition, for each standard dataset and QoI, we 

show a random selection of five complete true and predicted raw output traces from simulations with 

very low to very high wind speeds. 

We use histograms and box plots to relate the error introduced by the surrogate with the seed-to-seed 

uncertainty. We define the seed-to-seed variability seedò  of an aggregated quantity z  as  

 seed ( )( , ) ( , ) zs z s   νν νò , (17) 

where ν  is a realization of the random wind parameters (e.g. hubV , 1 , etc), and s  is the random seed 

and ( )

1

1
( , )

sn

z

ss

z s
n




 ν ν , with sn the number of available seeds. Analogously, we define the surrogate 

error surrò  as: 

 surr
ˆ( , ) ( , ) ( , )s z s z s ν ν νò , (18) 

where ẑ  is the value aggregated from the predicted time series.  

Table 7: QoIs and aggregated quantities used for model validation 

QoI Aggregated quantities 

( )t  RMSE 

( )t  RMSE 

( )P t  RMSE, E  

Bld ( )yM t  DEL, 
•max( ( ))M t  

 

 

3.5.3. Detailed performance analysis on selected QoIs 
 

Due to the complex nature of wind turbine models, which include structural physics, wind dynamics, 

control systems, etc., it is in general not possible to blindly build a surrogate model in the form of Eq. 

(2) directly from the input model. As introduced in Section 3.4.2, a sequence of intermediate auxiliary 

QoIs are constructed instead, and they are re-used for surrogating different final quantities of interest. 

Two auxiliary quantities of interest are in particular important, as they are re-used by virtually every 

other QoI that is being surrogated: blade pitch angle (controller-driven) and rotor speed (see Section 
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3.4.2). In the following, we first provide a detailed analysis of the surrogate performance on these two 

quantities, followed by a selection of the relevant QoIs introduced in Section 3.3.2. 

 

3.5.3.1. Auxiliary QoI: blade pitch 

 

Rotor speed is one of the most important state variables necessary to assess the state of a wind turbine, 

as it affects power production, and virtually all the loads each turbine component is subject to. While 

in principle it is mostly dependent on the input turbulence box (and consequently to its reduced 

representation ( )tξ ), it is also dependent on the blade pitch ( )t , which is electronically determined by 

the control system. The latter is therefore the first auxiliary QoI that we are going to present here. 

Following the surrogate modelling approach introduced in Section 3.4, the mNARX surrogate was 

calibrated with the set of parameters reported in Table 8. 

Due to the nature of the quantity, we assess its accuracy in terms of root-mean-square error (RMSE) on 

each time series on the relevant validation set. A graphical summary of the surrogate performance on 

the NTM validation dataset (see Section 3.5.2) is provided in Figure 6. With an overall RMSE in 

general below 0.03 rad (< 2°), it is clear that the surrogate can accurately reproduce the behaviour of 

the ROSCO controller with high accuracy on the entire nominal wind speed dataset. As a visual aid to 

associate RMSE with performance, two traces are highlighted below the RMSE histogram: a red trace 

associated to a relatively high RMSE, and a green trace associated to a relatively low one.  

To additionally assess the performance of the surrogate, we showcase in Figure 7 a number of raw 

traces randomly selected from the NTM validation dataset. In particular, no clear drift/error 

accumulation is clearly visible over time. This is expected, due to ( )t being essentially a function of 

the exogenous longitudinal wind-component xV , hence not strongly dependent on the autoregressive 

part of the mNARX process. 

Corresponding validation plots for the extreme turbulence model (ETM) validation dataset are reported 

in Figure 8 and Figure 9, respectively. The surrogate model performs remarkably well, with a slight 

increase in RMSE error, mostly due to occasional outliers. One such outliers is provided for reference 

on the lower left plot of Figure 8, where the surrogate pitch ˆ( )t  predicts a large controller response 

at 240 st   that is not present in the real trace. As it is clear from Figure 9, the surrogate response is 

in general more accurate for higher wind speeds. 

 

Table 8: Properties of mNARX surrogate for the blade pitch  

Exogenous inputs: ( )x tV  

Low wind speed 

regime 

High wind speed 

regime 

Number of turbulence box features ( )tξ  9 9 

Total number of NARX inputs  9 9 

NARX degree (interaction order) 3 (1) 5 (1) 

Auto-regressive lags 
y

 {1,160} {1,160} 

Exogenous input lags 


 {1} {1} 

Total number of NARX parameters 33 55 

Number of training simulations (samples) 100 (
610 ) 100 (

610 ) 
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Finally, the surrogate is benchmarked on the extreme operating gust (EOG) dataset in Figure 10 and   

Figure 11. The performance is once again very good, comparable to the other two regimes (NTM and 

ETM). The behaviour of the controller at the onset of the gust is also accurately reproduced at all wind 

speeds (see Figure 11). 

 

Figure 6: Surrogate model performance on the controller-driven blade pitch ( )t  on the normal 

turbulence model (NTM) validation dataset. Top: histogram of the root-mean-square error in degrees. 

Bottom left: example of high-RMSE validation sample; bottom right: example of a low RMSE 

validation sample. 
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Figure 7: Performance of the surrogate model of ( )t  on a selection of raw traces from the NTM 

validation set 
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Figure 8: Surrogate model performance on the controller-driven blade pitch ( )t  on the extreme 

turbulence model (ETM) validation dataset. Top: histogram of the root-mean-square error in degrees. 

Bottom left: example of high-RMSE validation sample; bottom right: example of a low RMSE 

validation sample. 
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Figure 9: Surrogate model performance on a selection of raw traces from the ETM validation set. 
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Figure 10: Surrogate model performance for the blade pitch ( )t  on the extreme operating gust 

(EOG) validation dataset. Top: histogram of the root-mean-square error in degrees. Bottom left: 

example of high-RMSE validation sample; bottom right: example of a low RMSE validation sample. 
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Figure 11: Surrogate model performance on a selection of raw traces from the EOG validation set. 
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3.5.3.2. Auxiliary QoI: rotor speed 

 

Once the blade pitch is available, it can be used as an additional feature to surrogate the rotor speed. In 

analogy to Table 8, we provide a summary of the surrogate model characteristics in Table 9.  

Table 9: Properties of mNARX surrogate for the rotor speed 

Exogenous inputs: ( )x tV , ˆ( )t  

Low wind speed 

regime 

High wind speed 

regime 

Number of turbulence box features ( )tξ  9 9 

Total number of NARX inputs  10 10 

NARX degree (interaction order) 4 (1) 4 (1) 

Auto-regressive lags 
y

 {1} {1} 

Exogenous input lags 


 {1,2} {1,2} 

Total number of NARX parameters 84 84 

Number of training simulations (samples) 100 (
610 ) 100 (

610 ) 

 

The surrogate of the blade pitch ˆ( )t  is now listed as one of the exogenous inputs, following the 

surrogate modelling chain described in Section 3.4.2. 

An overview of the performance of the mNARX surrogate on the NTM validation set is reported in  

Figure 12. On the top panel, we present a histogram of the RMSE error (see Section 3.5.2) on the entire 

NTM validation dataset. The overall RMSE is quite low, well below 0.25 rpms for most of the dataset. 

Two traces with a relatively high and low RMSE, color-coded in red and green, respectively, are shown 

on the remaining rows to aid with the interpretation of this error measure. 

To further assess the accuracy of the surrogate, an additional set of validation trace plots is provided in 

Figure 13. As for the case of the blade pitch ( )t , the performance over different wind regimes is 

overall excellent, and no clear performance drift/error accumulation over time is visible at time scales 

of 
2(6 10 s)O .  

Similar observations also hold for the surrogate model performance on the other two ETM and EOG 

wind regimes. Their performance are summarized in Figure 14 and Figure 15 for the ETM, and on 

Figure 16 and Figure 17 for the EOG validation sets. There is no appreciable decrease in surrogate 

modelling performance with the different climate scenarios, and even the onset of the wind gust for the 

EOG dataset is accurately modelled (see Figure 17). 

The overall performance of the two auxiliary surrogates ˆ( )t  and ˆ ( )t  allows us now to proceed in 

the surrogate modelling chain from Section 3.4.2 to a number of load-related output QoIs. 
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Figure 12: Surrogate model performance on the rotor speed ( )t  on the normal turbulence model 

(NTM) validation dataset. Top: histogram of the root-mean-square error in rpm. Bottom left: example 

of high-RMSE validation sample; bottom right: example of a low RMSE validation sample. 
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Figure 13: Performance of the surrogate model of ( )t  on a selection of raw traces from the NTM 

validation set. 
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Figure 14: Surrogate model performance on the rotor speed ( )t  on the extreme turbulence model 

(ETM) validation dataset. Top: histogram of the root-mean-square error in rpm. Bottom left: example 

of high-RMSE validation sample; bottom right: example of a low RMSE validation sample. 

 

 



 

35 

 

 

Figure 15: Performance of the surrogate model of ( )t  on a selection of raw traces from the ETM 

validation set. 
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Figure 16: Surrogate model performance on the rotor speed ( )t  on the extreme operating gust 

(EOG) validation dataset. Top: histogram of the root-mean-square error in rpm. Bottom left: example 

of high-RMSE validation sample; bottom right: example of a low RMSE validation sample. 
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Figure 17: Performance of the surrogate model of ( )t  on a selection of raw traces from the EOG 

validation set. 
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3.5.3.3. Primary QoIs: power production 

 

With both rotor speed and blade pitch available, it is now possible to surrogate most of the primary 

QoIs described in Section 3.3.2. We start from the electrical power P , using the mNARX configuration 

provided in Table 10. 

Table 10: Properties of mNARX surrogate for the power output ( )P t  

Exogenous inputs: ( )x tV , ˆ( )t , ˆ ( )t  

Low wind speed 

regime 

High wind speed 

regime 

Number of turbulence box features ( )tξ  4 4 

Total number of NARX inputs  6 6 

NARX degree (interaction order) 7 (1) 3 (3) 

Auto-regressive lags 
y

 {1,30} {1,30} 

Exogenous input lags 


 {1,30} {1} 

Total number of NARX parameters 98 164 

Number of training simulations (samples) 100 (
610 ) 100 (

55 10 ) 

 

As a suitable error measure for this quantity, we use the integrated energy production over a 10 minutes 

time interval. We present an overview of the performance of the surrogate ˆ( )P t  on the NTM data set 

in Figure 18. The overall accuracy of the surrogate is quite high, although a clear bias towards 

underestimating the produced energy is visible, especially close to the high total energy region. This 

behaviour is more clearly visible in Figure 19, where it becomes apparent that this bias occurs mostly 

in the region with hub 11 m/sV  . This is the transition region around which the wind turbine often 

reaches its rated power, hence changing its controller regime.  In Figure 20 we present a random set of 

raw traces for different values of hubV , making this regime transition region even clearer. It is clear that 

the mNARX surrogate is very accurate at low and high wind speeds, but additional work is needed to 

improve its performance in the intermediate wind speeds region. 

This behavior is further confirmed in the analogous set of figures for the extreme turbulence model 

(ETM) validation set: Figure 21, Figure 22 and Figure 23. Because of the higher wind speeds, the 

overall performance of the surrogate is generally much better and less biased than for the normal 

turbulence model. 

Finally, the performance of the mNARX surrogate on the extreme operating gust (EOG) data set is 

highlighted in Figure 24, Figure 25, and Figure 26. This last dataset unfortunately only has a limited 

number of simulations available at low high wind speeds, likely due to many of them failing to complete 

due to the lack of a turbine shutdown mechanism. Nevertheless, the surrogate model performance is 

once again consistent with the previous findings, with high accuracy at relatively low and relatively 

high wind speeds, but a significant drop in performance in the region around hub 10 m/sV  . 
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Figure 18: Surrogate model performance on the power production ( )P t  on the normal turbulence 

model (NTM) validation dataset. Top left: scatter plot of true vs. surrogate total energy produced E . 

Top right: histogram of the energy production discrepancy in MWh. Bottom left: example of an 

inaccurate energy estimation sample. Bottom right: example of an accurate energy estimation sample. 
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Figure 19: Surrogate model performance vs seed-to-seed variability on the total energy produced E  

on the normal turbulence model (NTM) validation data set.  
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Figure 20: Performance of the surrogate model of the power output P  on a selection of raw traces 

from the NTM validation set. 
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Figure 21: Surrogate model performance on the power production ( )P t  on the extreme turbulence 

model (ETM) validation data set. Top left: scatter plot of true vs. surrogate total energy produced E . 

Top right: histogram of the energy production discrepancy in MWh. Bottom left: example of an 

inaccurate energy estimation sample. Bottom right: example of an accurate energy estimation sample. 

 

Figure 22: Surrogate model performance vs seed-to-seed variability on the total energy produced E  

on the ETM validation dataset.  
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Figure 23: Performance of the surrogate model of the power output P  on the ETM validation set. 
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Figure 24: Surrogate model performance on the power production ( )P t  on the extreme operating 

gust (EOG) validation data set. Top left: scatter plot of true vs. surrogate total energy produced E . 

Top right: histogram of the energy production discrepancy in MWh. Bottom left: example of an 

inaccurate energy estimation sample. Bottom right: example of an accurate energy estimation sample. 

 

Figure 25: Surrogate model performance vs seed-to-seed variability on the total energy produced E  

on the EOG validation data set.  



 

45 

 

 

 

Table 11: Summary of the surrogate model performance on the total energy produced E . The 

coefficients of determination 
2R  corresponds to the scatter plots in Figure 18, Figure 21 and Figure 

24. The mean of the surrogate error 
surr , the standard deviation of the surrogate error

surr and the 

standard deviation of the seed-to-seed uncertainty 
seed  correspond to the histograms in Figure 19, 

Figure 22 and Figure 25.  

 Energy produced E  

2R  
surr  

surr  
seed  /

surr seed    

NTM 0.996 -0.007 0.019 0.022 0.832 

ETM 0.995 -0.012 0.010 0.058 0.170 

EOG 0.994 -0.009 0.020 0.015 1.341 
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Figure 26: Performance of the surrogate model of the power output P  on a selection of raw traces 

from the EOG validation data set. 
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3.5.3.4. Primary QoIs: flapwise blade root moment 

 

Next, we benchmark the surrogate performance on the flapwise blade root bending moment 
Bld

yM , 

using the mNARX configuration in Table 12. 

Table 12: Properties of mNARX surrogate for the flapwise blade root moment 
Bld ( )yM t   

Exogenous inputs: ( )x tV , ˆ( )t , ˆ ( )k

i t  

Low wind speed 

regime 

High wind speed 

regime 

Number of turbulence box features ( )tξ  25 25 

Total number of NARX inputs  34 34 

NARX degree (interaction order) 2 (2) 2 (2) 

Auto-regressive lags 
y

 {1,16,32} {1,2} 

Exogenous input lags 


 {1} {1} 

Total number of NARX parameters 740 702 

Number of training simulations (samples) 100 (
52 10 ) 100 (

52 10 ) 

 

As for the auxiliary QoIs presented in Sections 3.5.3.1 and 3.5.3.2, for each of the three validation wind 

regimes (NTM, ETM and EOG) we present the surrogate model performance at first as a 

summary/overview, and then on a selection of raw trace plots. Because of the nature of the flapwise 

blade root moment 
Bld

yM , we choose to use as a two different performance metrics: RMSE on the 

damage equivalent load (DEL) for each trace, and RMSE on the maximum load. Please note that these 

quantities are used only as error measures on the output time series, not as the outputs of the surrogate 

model themselves.  

The surrogate model performance of Bldˆ ( )yM t  in terms of DEL is summarized in Figure 27, while its 

performance in terms of maximum load is provided in Figure 28. Both plots provide additional insight 

by means of the scatter plot  
Bld ( )yM t  vs Bldˆ ( )yM t  on the top left, where the true model versus the 

surrogate are plotted against one another. The heatmap color-coding represents the underlying mean 

hubV  for each simulation point.  

Overall, the surrogate model accuracy of Bldˆ ( )yM t  in terms of DEL is high, especially for either very 

low and very high hubV , with a decrease in performance in the intermediate regimes. In particular, a 

small but significant bias of approximately 0.2 MN is visible across most of the samples, as 

summarized in the histogram of surrò on the top right. We interpret this bias as a consequence of an 

accuracy reduction at higher frequencies, that is visible both in the trace plots in Figure 27, and the 

larger set of raw traces presented in Figure 30. Similar observations hold for the performance on the 

maximum load per trace in Figure 28, and the overall surrogate behaviour is comparable. 

For a better overview comparison, Figure 29 provides a deeper insight on the nature of the discrepancy 

and bias observed in both error measures, with the top row corresponding to DEL, while the bottom 

corresponding to the maximum load per trace. In each row, we provide in red box-plots of the same 

discrepancy measure provided in Figure 27, but as a function of the hubV  (binned in 5 representative 

speeds for readability). To provide a comparison in scale, we provide a similar error measure based on 
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the dispersion around the mean of the true values in the validation set, due to the natural seed-to-seed 

variability (see Section 3.5.2 for details). On the right, we provide instead aggregate histograms: the red 

histogram corresponds to the histogram on the top-right panel of Figure 27, while the blue histogram 

only showcases the dispersion of the true validation dataset around the mean, for each wind speed. 

Please note that the two error measures are not directly comparable (surrogate modelling error vs seed-

to-seed uncertainty), but the seed-to-seed uncertainty is rather provided as a relative scale to assess 

approximation accuracy.  

The main take away of Figure 29 is that most of the surrogate modelling error is due to its bias at 

intermediate wind speeds, while low- and high- wind speeds are reproduced correctly and with little to 

no bias. Figure 30 showcases a random set of traces from the NTM dataset with increasing hubV , which 

visually confirms the high accuracy of the surrogate at low and high wind speeds, and its reduced 

performance at intermediate wind speeds. 

 

 

Figure 27: Surrogate model performance on the flapwise blade root moment 
Bld

yM  on the normal 

turbulence model (NTM) validation dataset. Top left: scatter plot of true vs. surrogate DEL 

estimation. Top right: histogram of the root-mean-square error in MN. Bottom left: example of an 

inaccurate DEL estimation sample. Bottom right: example of an accurate DEL estimation sample. 
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Figure 28: Surrogate model performance on the flapwise blade root moment 
Bld

yM  on the normal 

turbulence model (NTM) validation dataset. Top left: scatter plot of true vs. surrogate maximum load 

estimation. Top right: histogram of the root-mean-square error in MN. Bottom left: example of an 

inaccurate maximum load estimation sample. Bottom right: example of an accurate maximum load 

estimation sample. 
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Figure 29: Surrogate model performance vs seed-to-seed variability on the flapwise blade root 

moment 
Bld

yM  on the normal turbulence model (NTM) validation dataset. Top panel: DEL. Bottom 

panel: maximum load. 
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Figure 30: Performance of the surrogate model of the flapwise blade root moment 
Bld

yM  on the 

normal turbulence model (NTM) on a selection of raw traces from the NTM validation set. 

 

Surrogate performance on the extreme turbulence model (ETM) is showcased by the corresponding set 

of plots in Figure 31 (DEL), Figure 32 (maximum load), Figure 33 (surrogate error vs seed-to-seed 

variability) and Figure 34 (raw trace plots). Consistently with the previous results, at the higher wind 

speeds typical of the ETM scenario, the overall accuracy remains comparable, but the bias is 
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significantly reduced. This is particularly clear from both the box plots and the histograms in Figure 

33. 

 

 

 

Figure 31: Surrogate model performance on the flapwise blade root moment 
Bld

yM  on the extreme 

turbulence model (ETM) validation dataset. Top left: scatter plot of true vs. surrogate DEL estimation. 

Top right: histogram of the root-mean-square error in MN. Bottom left: example of an inaccurate 

DEL estimation sample. Bottom right: example of an accurate DEL estimation sample. 
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Figure 32: Surrogate model performance on the flapwise blade root moment 
Bld

yM  on the extreme 

turbulence model (ETM) validation dataset. Top left: scatter plot of true vs. surrogate maximum load 

estimation. Top right: histogram of the root-mean-square error in MN. Bottom left: example of an 

inaccurate maximum load estimation sample. Bottom right: example of an accurate maximum load 

estimation sample. 
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Figure 33: Surrogate model performance vs seed-to-seed variability on the flapwise blade root 

moment 
Bld

yM  on the extreme turbulence model (ETM) validation dataset. Top panel: DEL. Bottom 

panel: maximum load. 
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Figure 34: Performance of the surrogate model of the flapwise blade root moment 
Bld

yM  on the 

extreme turbulence model (ETM) on a selection of raw traces from the ETM validation set. 
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Finally, the surrogate behavior on the extreme operating gust (EOG) dataset also showcases a similar 

behavior, but with an overall larger dispersion. We report the benchmarks in Figure 35 (DEL), Figure 

36 (maximum load), Figure 37 (surrogate error vs seed-to-seed variability) and Figure 38 (raw trace 

plots). Despite the larger variability, probably due to a relative underrepresentation of this type of 

scenario (extreme winds) in the training dataset, the overall performance of the surrogate is satisfactory, 

reproducing accurately the effects of the wind gust at its onset on virtually every trace. 

 

 

Figure 35: Surrogate model performance on the flapwise blade root moment 
Bld

yM  on the extreme 

operating gust (EOG) validation dataset. Top left: scatter plot of true vs. surrogate DEL estimation. 

Top right: histogram of the root-mean-square error in MN. Bottom left: example of an inaccurate 

DEL estimation sample. Bottom right: example of an accurate DEL estimation sample. 
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Figure 36: Surrogate model performance on the flapwise blade root moment 
Bld

yM  on the extreme 

operating gust (OEG) validation dataset. Top left: scatter plot of true vs. surrogate maximum load 

estimation. Top right: histogram of the root-mean-square error in MN. Bottom left: example of an 

inaccurate maximum load estimation sample. Bottom right: example of an accurate maximum load 

estimation sample. 
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Figure 37: Surrogate model performance vs seed-to-seed variability on the flapwise blade root 

moment 
Bld

yM  on the extreme operating gust (EOG) validation dataset. Top panel: DEL. Bottom 

panel: maximum load. 
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Table 13: Summary of the surrogate model performance on the damage equivalent load of the 

flapwise blade root moment 
Bld

yM . The coefficients of determination 
2R  corresponds to the scatter 

plots in Figure 27, Figure 31 and Figure 35. The mean of the surrogate error 
surr , the standard 

deviation of the surrogate error
surr and the standard deviation of the seed-to-seed uncertainty 

seed  

correspond to the histograms in Figure 29, Figure 33 and Figure 37. 

 DEL 
Bld

yM  

2R  
surr  

surr  
seed  /

surr seed    

NTM 0.956 -0.276 0.418 0.513 0.815 

ETM 0.905 -0.274 0.705 0.944 0.746 

EOG 0.898 -0.191 1.007 1.155 0.872 

 

 

Table 14: Summary of the surrogate model performance on the maximum value of the flapwise blade 

root moment 
Bld

yM . The coefficients of determination 
2R  corresponds to the scatter plots in Figure 

28, Figure 32 and Figure 36. The mean of the surrogate error 
surr , the standard deviation of the 

surrogate error
surr and the standard deviation of the seed-to-seed uncertainty 

seed  correspond to the 

histograms in Figure 29, Figure 33 and Figure 37.  

 Bld )max( yM  

2R  
surr  

surr  
seed  /

surr seed    

NTM 0.973 -0.221 0.411 0.488 0.843 

ETM 0.852 -0.258 0.836 0.938 0.891 

EOG 0.894 0.490 0.786 0.985 0.798 
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Figure 38: Performance of the surrogate model of the flapwise blade root moment 
Bld

yM  on the 

extreme operating gust (EOG) on a selection of raw traces from the EOG validation set. 
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3.5.4. Computational costs 
 

In Section 3.4, we proposed a multi-step surrogate modelling strategy to model the transient response 

of the output quantities of a wind turbine. In this section we provide an overview of the computational 

costs of each step involved in constructing the surrogate model, as well as the costs of applying it on 

new turbulence boxes. One of the primary quantities of interest, 
Bld ( )yM t , requires the blade pitch ( )t  

and rotor speed ( )t  as exogenous inputs. For simplicity, we attribute the cost of creating and 

evaluating the surrogates for ( )t  and ( )t  entirely to the costs of the 
Bld ( )yM t , although they can be 

reused as exogenous inputs to predict also other QoIs. The same reasoning applies to most of the pre-

processing steps involved during the construction of the surrogate. Therefore, the reported 

computational costs serve as an upper bound and scale well with an increasing number of QoIs. 

Table 15 shows the costs associated with preprocessing a single 10-minute simulation as used to 

create the 
Bld

yM -model. For the prediction of new turbulence boxes, the steps are identical except that 

the true values for the QoIs are not loaded from disk. The time taken to train each of the auxiliary 

surrogates and the primary surrogate is given in Table 16 

 

Table 15: Computation time in milliseconds associated with the preprocessing of a 10 minute 

turbulence box as performed during the construction and evaluation of the surrogate model for the 

flapwise blade root moment 
Bld ( )yM t . 

Step Time (ms) 

Read wind box from disk  164 

Read QoIs from disk 40  

Discrete cosine transform 73  

Scaling 5  

Interpolation 64 

 

Table 16: Computation in seconds to train the surrogate model for the pitch ( )t , rotor speed ( )t  

and the flapwise blade root moment 
Bld ( )yM t . The configuration and number of training samples 

used corresponds to the low wind speed models listed in the Table 8, Table 9, and Table 11. 

Model Time (s) 

 -model  1.5 

 -model 7  
Bld

yM -model 14  

 

Table 17: Computation time in milliseconds to evaluate the surrogate on 
510  time steps (one full 

trajectory). With a sampling frequency of 160 Hz this is equivalent to a 10 min simulation. 

Model Time (ms) 

 -model  21  

 -model 57  
Bld

yM -model 334  
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3.6. Discussion and conclusions on the time series surrogate model 
 

3.6.1. Performance analysis 
 

According to the SMART deliverable D4.1 reported in Section 2.2, the two main measures of success 

for this deliverable are: 

1. Surrogate modelling approaches are developed and have at least one order of magnitude better 

computational efficiency than the original aeroelastic modelling tool 

2. Surrogate model uncertainty is not greater than the turbulence-induced statistical uncertainty 

(seed-to-seed uncertainty) 

Based on the extensive benchmarking results presented in Sections 3.5.3 and 3.5.4, we are confident to 

claim that: 

1. The proposed mNARX method is remarkably faster than the one order of magnitude requested 

by the SMART deliverable. Even in its current prototype/demonstrator stage, the speedup it 

provides is already 250  faster than the full ASE simulator it is trained on. 

2. While more complex to assess, due to the lack of a unique/suitable error measure for seed-to-

seed variability of time series, we demonstrated that the accuracy of the proposed mNARX 

method is already sufficient for a number of applications in the context of probabilistic design 

of wind turbines. From our experience, we can certainly argue that the modelling uncertainty 

introduced by the surrogate is lower than that introduced by the discrepancy between different 

simulators (e.g. OpenFAST, Hawc2, Diego, etc.). 

3. The reliance of mNARX on well-known and freely available technologies, such as 

autoregressive models and DFT makes it an ideal tool to share simulators between Hiperwind 

partners, without the need of complex technology transfers.  

 

 

3.6.2. Portability 
 

The entire codebase of mNARX is implemented with Python and based on the modules NumPy, Scipy 

and Numba, hence not requiring specific/commercial tools to be used. The surrogate model itself is 

trained on a relatively small set of full ASE simulations (
2(10 )O ), and it can therefore in principle be 

easily retrained on different simulation codes (e.g. Hawc2, Diego or DeepLines Wind) and different 

wind conditions, both offshore and onshore, on a common business laptop.  

 

3.6.3. Limitations/further work 
 

The most obvious limitations of the study presented is that it was benchmarked only on an onshore wind 

turbine reference model. This limitation is due to the lack of availability to ETH of a proper ASE 

simulation code, as well as the lack of statistically meaningful models of wind- and wave- 

environmental conditions during the development stage of mNARX.  
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Nevertheless, the construction of mNARX is entirely non-intrusive, which means that additional, 

possibly time-dependent environmental conditions can easily be added to the input manifold ( )tζ  and 

treated as any of the other quantities. In particular, we expect that the presence of waves and especially 

that of a floating platform may require additional inputs such as wave elevations, as well as additional 

intermediate QoIs, such as e.g. platform pitch, roll and heave parameters. However, we have no reason 

to believe that the dynamics of the system could not be handled through the same methodological 

approach. 

Finally, at the current demonstrator stage the mNARX parameters highlighted in Table 4 are fine-tuned 

manually, one QoI at a time. However, we plan to fully automatize and optimize this process by means 

modern optimization techniques based on cross-validation error from the machine-learning and 

uncertainty quantification literature. 
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4. Bayesian Neural Networks (BNN) 
 

4.1. Introduction and problem description 
 

An adequate probabilistic design approach needs to consider all major sources of uncertainty, with as 

accurate quantification as possible. This is especially true for the purpose of reliability analysis, where 

due to the small target failure probabilities it is not only the bulk of the distributions, but their tails that 

are potentially of high importance2. At the same time, addressing a problem in a probabilistic way means 

we are dealing with a broad range of scenarios to cover the entire probability space. This will typically 

require many function calls to numerical models that can be computationally expensive. A common 

approach to reduce the computational intensity is training surrogate models that map the behavior of 

the complex models but are significantly faster. This increase in efficiency comes at the expense of 

introducing additional model uncertainty due to the potential inaccuracies in the surrogate model.  

Regression models based on Feedforward Neural Networks (FNN) (Goodfellow, et al., 2016) are a 

popular surrogate modelling approach (Dimitrov, 2019), (Schröder, et al., 2018) that has some well-

known advantages: 

- Very efficient training process due to the availability of back-propagation algorithms that utilize 

the chain rule for computing analytical derivatives; 

- Flexibility combined with robustness – FNNs can theoretically approximate any function; 

- Compared to other regression model approaches such as spectral surrogates (e.g., polynomial 

models) or Gaussian process regression, the computational performance of FNNs is less 

sensitive to the number of input variables. 

On the other hand, FNN models have some disadvantages such as: 

- They are so-called “black box” models, meaning that their parameters have no physical 

meaning and it is harder to interpret the model behavior; 

- FNN may require large amounts of data to train properly, otherwise they can overfit and 

interpret noise as patterns in the data; 

- Due to the highly connected architecture of the FNNs, it is not possible to perform model 

reduction by eliminating unnecessary terms as what is the usual practice with simpler models.  

The standard FNN-based surrogate models provide a deterministic prediction, and the uncertainty is not 

a direct output of the models. However, the so-called Bayesian Neural Networks (BNNs) (Blundell, et 

al., 2015) are a modification of FNNs where the deterministic model parameters are replaced with 

probabilistic ones, resulting in a model that can give uncertainty estimates. BNNs still have limited use 

in probabilistic design and reliability analysis problems – especially in the wind energy domain. This 

means there is lack of experience regarding BNN model performance on specific issues such as tail 

distribution prediction, model uncertainty when modelling complex regression problems, and other. 

The work described in this section focuses on answering the following research questions: 

1) How can we use BNNs to build accurate wind turbine load and power output surrogates that 

also represent the uncertainties in an adequate way? 

2) How adequate are BNN models for specific probabilistic design applications such as a) 

predicting the tail distribution of load extremes and b) modelling the full probability distribution 

of aggregate quantities (such as fatigue loads) including uncertainties? 

                                                      
2 This is mainly the case when a single or a few random input variables dominate the behavior of the limit state 

function. 
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3) What is the performance of BNNs in comparison of other alternatives such as running an 

ensemble of deterministic models?  

 

4.1.1. Probabilistic regression models 
 

Let us consider a physical system whose behavior can be characterized by random inputs 𝐱 and outputs 

𝐲 (where the bold symbols denote vectors, to indicate that the system can have multiple inputs and 

multiple outputs as well). The true relationship between 𝐱 and 𝐲 is represented by a hypothetical 

function �̃�(𝐱), which however may be too complex to characterize accurately. Therefore, we typically 

accept that a real-world model will not achieve perfect mapping. The actual model function 𝑔(𝐱) will 

include a finite set of parameters 𝛉, and will have a certain error: 

𝒚 = �̃�(𝒙) = 𝑔(𝒙, 𝜽) + 𝜺𝑔            (19)
            

The term 𝛆𝑔 is typically called model error and is an example of epistemic uncertainty - i.e., uncertainty 

arising due to lack of knowledge that can be reduced by model improvement. In addition to the model, 

there can be uncertainties in both the input and output variables. These are typically a combination of 

aleatory uncertainties (due to random phenomena we cannot control), and epistemic ones such as 

measurement uncertainties. Let us denote the measured (or predicted) values of the inputs and outputs 

by  �̂� and �̂� respectively. They relate to the true values by 𝐱 = �̂� + 𝛆𝑥 and 𝐲 = �̂� + 𝛆𝑦, leading to the 

following generic probabilistic model equation:  

�̂� + 𝜺𝑦 = 𝑔(�̂� + 𝜺𝑥, 𝜽) + 𝜺𝑔     (20) 

Within the above definition, multiple model implementations are possible that consider a subset of the 

uncertainty factors and as a result can serve different purposes. Below, four specific approaches are 

outlined, where one is the baseline, fully deterministic approach, and each of the remaining three is 

considering one uncertainty term - 𝛆𝑥, 𝛆𝑦, and 𝛆𝑔, respectively.  

Figure 39 shows examples that illustrate the different uncertainty modelling approaches on a toy 

problem. In each plot, the blue dots represent a reference probabilistic data set following the relationship 

𝑦 = 0.5𝑥3 − 2𝑥2 + 30𝑥 − 10 + 𝜀, where 𝜀 is a random Gaussian variable with mean of 0 and standard 

deviation of 100. The red lines and circles represent model predictions. The random term 𝜀 is 

representative of aleatory uncertainty, however any model trained on a sample of (𝑥, 𝑦) will also have 

an epistemic (model) uncertainty because the training set is of finite size. The details and properties of 

each modeling approach are elaborated below. 
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Figure 39: Examples of models considering different uncertainty sources. Top left: deterministic 

model not considering any uncertainty, top right: model considering all uncertainty as aleatory, 

bottom left: model taking only epistemic (model) uncertainty into account, bottom right: a model that 

considers both epistemic and aleatory uncertainties. 

 

4.1.2. Deterministic model - Input uncertainty propagation 
 

For the vast majority of numerical and analytical models, the parameters 𝛉 are deterministic, meaning 

that the function 𝑔(�̂� + 𝛆𝑥 , 𝛉) is also deterministic, and a given set of input values will always produce 

the same outputs – i.e., the function 𝑔(�̂�, 𝛉) provides unique and invariant mapping from  �̂� to �̂�. Among 

many applications of such models, one particular use case is uncertainty propagation, where the inputs 

𝐱 are sampled in a way representative of the distribution of the uncertainty terms 𝛆𝑥. As a result, the 

variation in the outputs represents the effect of the input uncertainty on the outputs. In a case where the 

uncertainty propagation is the only intended result, the deterministic behavior of 𝑔(�̂�, 𝛉) is a 

requirement as it eliminates the effect of other uncertainty sources.  

A deterministic model will only predict the mean values, �̅� = 𝑔(�̂�, 𝛉) where �̅� = 𝐸(𝐲 |𝐱) and will not 

capture the variability due to the aleatory uncertainty. The overall uncertainty can be estimated by 

analysis of the model residuals (the unexplained variance), but the source of uncertainty and its 

dependence on the inputs cannot be identified. 
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Training such a deterministic model involves minimizing the difference between the model predictions 

and the true outputs. This amounts to finding the values of 𝛉 that lead to the model error 𝛆𝑔 having 

approximately zero mean and the smallest possible variance. The most commonly used training 

approach is least-squares minimization. An example of the modelling outcome is shown in Figure 39, 

top right plot. 

 

4.1.3. Models with probabilistic outputs (stochastic simulators) 
 

Repeated experiments (e.g. repeatedly sampling a numerical model or acquiring measurements) at the 

same input values will give a variation in 𝐲 which is representative of the output (aleatory) uncertainty, 

𝛆𝑦. A simple way to characterize this uncertainty is to consider 𝐲 = �̂� + 𝛆𝑦 as a random variable 

following a given (joint) probability distribution, and let the model predict the distribution parameters 

of 𝐲 rather than the actual values (Zhu & Sudret, 2020), (Zhu & Sudret, 2021). As the outputs are the 

only probabilistic element, models with the discussed definition treat both the model and the output 

uncertainties as a single factor and it is not possible to directly distinguish between the uncertainty 

sources. However, if the training sample becomes large and the model has adequate predictive 

capability, the model uncertainty will get smaller (as seen on e.g. Figure 39 and Figure 42) and the 

aleatory uncertainty will dominate. We list two practical approaches to train such a model: 

- Run repeated experiments at each sample point in �̂�, thus obtaining a sample of the distribution 

of �̂�|�̂�. Train a deterministic model for 𝛉𝐲|�̂� that are the distribution parameters of �̂�|�̂�, as 

function of the inputs �̂�. Probabilistic sampling from the surrogate model at a given point �̃� 

takes place by 1) calling the model to obtain an estimate of the conditional distribution 

parameters 𝛉𝐲|�̃�, and 2) generating a random sample from that conditional distribution. With 

this approach, the same workflow as with the completely deterministic models can be 

maintained because the training can be done using a least-squares minimization approach. 

- Alternatively, define a likelihood function on the probability distribution of 𝐲|�̂�, which under 

the assumption that we want to train an unbiased model (i.e., the mean of 𝛆𝑔 is zero), will be 

equivalent to the probability distribution of the model error 𝛆𝑔|�̂�. Model training aims at finding 

the set of parameters that maximize the likelihood function. Note that the total set of parameters 

is the combination of (𝛉, 𝛉𝐲), i.e. both the model parameters and the distribution parameters of 

𝐲|�̂�. With this approach, repeated experiments at each sample point are not necessary since the 

distribution parameters 𝛉𝐲 do not need to be explicitly observed beforehand, they are 

determined within the training process. In a Bayesian Neural Network (BNN) architecture, this 

modelling approach can be achieved by introducing a distribution layer (a layer with 

coefficients corresponding to the parameters of a probability distribution) as the output layer of 

the network. 

Figure 39, top-right, shows an example of the behavior of a model with probabilistic outputs 

representing predominantly aleatory uncertainty.  

4.1.4. Considering model uncertainty – by ensemble models and models with 

probabilistic parameters 

 
Using different datasets to train multiple deterministic regression models with identical input and output 

variables results in a model ensemble that can give an estimate of the model uncertainty. This estimate 

would mainly account for the model (statistical) uncertainty due to the limited amount of data used for 

model training – but will not account for other factors such as the model functions not being sufficient 
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to represent the patterns in the data. Consequently, this estimate of the model uncertainty will tend to 

zero when the amount of training data tends to infinity and is drawn from a stationary distribution. One 

way to construct a model ensemble from relatively limited amount of data is the bootstrapping 

technique. Further, in order to isolate the model uncertainty effect from that of aleatory (output) 

uncertainties, the training data may consist of multiple realizations at the same input value 

combinations. Then the actual model training uses the mean of all realizations at each sample point.  

This model formulation reads: 

�̅� = 𝑔𝑖(�̂�, 𝛉𝑖) + 𝛆𝑔,𝑖,   𝑖 = 1 … 𝑁𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 

where 𝛆𝑔,𝑖 are the residuals of the ith model in predicting the outputs averaged over all 

realizations,  �̂�.The estimate of model uncertainty can then be obtained by characterizing the 

distribution of 𝛆𝑔. 

Another way of taking model uncertainty into account is making the model parameters, 𝛉, probabilistic, 

represented by a joint distribution. The parameters of this joint distribution can be determined by 

likelihood maximization. For smaller problems (a few computational parameters) it would be the full 

distribution of 𝛉 that could be inferred, however this is intractable for large neural networks where the 

large number of parameters would among other things require inferring a very large matrix of cross-

covariance terms. A common solution (as proposed by (Blundell, et al., 2015)) is to only infer the mean 

values of the parameters as well as the main diagonal of the covariance matrix – meaning that all 

parameters are treated as independent, which is a fair assumption for neural networks where the 

parameters have no physical meaning. This is the approach used with BNNs, where probabilistic 

parameters can be included by introducing “variational” layers in the network. 

Figure 39, bottom-left, shows an example of a model ensemble that is used to demonstrate the effect of 

model uncertainty.  

Finally, it is also possible to have BNN models that simultaneously take into account epistemic and 

aleatory uncertainty. This is achieved by introducing both variational layers and probabilistic output 

layers in the network. This model implementation is explained in more details in the following sections. 

  

4.2. Study design and data generation 
 

In order to study the behavior of BNNs as probabilistic regression surrogate models, we define a use 

case based on wind turbine aeroelastic load simulations (hereafter called load simulations for brevity). 

Load simulations are used for wind turbine design and site suitability assessments, which requires 

simulating a broad range of design scenarios (typically in the order of thousands of 10-minute time 

series simulations per design iteration). Since the load simulations are relatively costly from a 

computational point of view, there are situations where it is desirable and feasible to replace them with 

a surrogate model. Examples include site suitability assessment, wind farm layout and control 

optimization. Since the wind turbine design criteria include both fatigue limit state (FLS) and ultimate 

limit state (ULS) criteria, it means that both aggregated statistics (such as damage-equivalent fatigue 

loads, DEL) and extremes need to be quantified. A useful surrogate model (or models) would need to 

have high accuracy in predicting the full distribution of loads in order to get accurate numerical 

integrations over the joint probability distribution of environmental input conditions - which are needed 

to evaluate design criteria over the turbine lifetime. In addition, for adequate assessment of the ultimate 

limit states and potentially using those in a reliability analysis, the models need a good prediction of the 

tails of the load distributions.  
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The IEC 61400-1 design standard provides a reference definition of the scenarios and the environmental 

conditions to be used for wind turbine design. For onshore sites, the major driving environmental factors 

are the wind speed and the turbulence, characterized by a joint probability distribution. Wind shear is 

also considered - defined as an exponential function with a deterministic exponent (either 0.11 or 0.2). 

When addressing site-specific problems, additional variables or more detailed modelling of a given 

variable may come into play depending on the specific conditions at the site. As a realistic use case, we 

choose four environmental variables: wind speed, turbulence, wind shear and air density. The joint 

distribution of wind speed vs. turbulence is as defined by the IEC61400-1 standard, while the wind 

shear is taken as conditional on wind speed using the formula defined in (Dimitrov, et al., 2015). Air 

density is considered independent and following a Gaussian distribution. The exact distribution 

parameters are outlined below.  

 Wind speed 𝑢: a truncated Weibull distribution with parameters 𝐴 = 11.28 and 𝑘 = 2, and 

bounded between the cut-in and cut-out wind speed of the turbine under consideration. The 

Weibull distribution parameters correspond to IEC wind speed class I (mean wind speed of 

10m/s). 

 Turbulence 𝜎𝑢: the standard deviation of wind speed, 𝜎𝑢, is considered Lognormally 

distributed, conditional on the wind speed. The mean and standard deviation of the lognormal 

distribution are defined with the formulas 𝜇𝜎𝑢
|𝑢 = 0.14(0.75𝑢 + 3.8) and 𝜎𝜎𝑢

= 1.4 ⋅ 0.14, 

respectively, which corresponds to IEC turbulence class B. 

 Wind shear exponent 𝛼: considered Gaussian, with mean and standard deviation conditional on 

the wind speed: 𝜇𝛼|𝑢 = 0.088(ln(𝑢) − 1) and 𝜎𝛼|𝑢 = 1/𝑢, respectively. This is the 

expression recommended by (Dimitrov, et al., 2015), (Kelly, et al., 2014).  

 Air density 𝜌: independent Gaussian with mean 1.225 and standard deviation of 0.05 

A total of 2,000 random samples are generated from the above distributions. The sample generation is 

done in a two steps process: 1) a set of uniform, i.i.d. variables ranging from 0 to 1 is drawn from a 

Halton quasi-random sequence, and 2) the physical values with the correct joint distribution are 

obtained by a Rosenblatt transformation. The resulting dataset is visualized in Figure 40. 
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Figure 40: Scatter plots of the environmental condition distributions – used as load simulation and 

surrogate model inputs. Top left: wind speed histogram. Top right: turbulence as function of wind 

speed. Bottom left: wind shear exponent vs. wind speed. Bottom right: Air density vs. wind speed. 

 

An advantage of using numerical simulations in the present problem is that there is no measurement 

uncertainty, meaning that the “true” values of the inputs and outputs are known, and 𝐲 ≡ �̂� and 𝐱 ≡ �̂�. 

This eliminates the 𝛆𝑥 term from Eq. (2), as well as the part of 𝛆𝑦 that is due to measurement uncertainty. 

Load simulations use turbulent wind field realizations (so-called “turbulence boxes”) as inputs. Since 

turbulence boxes are random realizations and external to the actual wind turbine system that we are 

modelling, their effect can be considered as aleatory uncertainty (appearing as part of the uncertainty 

on the output, 𝛆𝑦). This gives the possibility to design studies where the effect of aleatory uncertainty 

can be quantified and/or eliminated, and considered separately from the effect of model uncertainties. 

In the present study, 20 different turbulence realizations (seeds) are used at each sampling point. Since 

the variation in the load outputs with respect to seed-to-seed uncertainty follows the law of large 

numbers, using 20 seeds means that the standard deviation of the mean load estimates is reduced by a 

factor of √20 = 4.47.  

Based on the above design of experiment, 40,000 load simulations (20 seeds per sample point over 

2,000 sample points) are carried out on a multi-megawatt offshore wind turbine model using the Hawc2 

aeroelastic simulation tool. All simulations are with 10-minute duration and represent operation under 

normal (power production) conditions. Figure 41 shows an overview of the statistics from the load 

simulation results for several channels of interest.  
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The surrogate modelling effort focuses on three groups of signals divided according to the type of 

statistics that are of interest:  

1) Damage-equivalent fatigue loads (DELs) where quality of representation of the entire 

probability distribution is of interest are considered for 6 signals: tower base fore-aft (𝑀𝑥) 

and side-to-side (𝑀𝑦) bending moments, blade root flapwise  (𝑀𝑥) and side-to-side 

(𝑀𝑦) bending moments, tower top yaw (torsion) moment 𝑀𝑧, and shaft torsion moment, 𝑀𝑧; 

2) Extremes, where the prediction of the distribution tails is of highest importance, for 4 signals: 

tower base fore-aft (𝑀𝑥) and side-to-side (𝑀𝑦) bending moments, blade root flapwise  (𝑀𝑥) 

and side-to-side (𝑀𝑦) bending moments; 

3) Mean values of the shaft torsion 𝑀𝑧 and for the electrical power, blade pitch, and rotor 

rotational velocity. Just as with the DELs, for the mean values it is the full probability 

distribution over the full range of environmental inputs that is of importance. 

 

Figure 41: Overview of the outcomes from the aerodynamic load simulations. Scatter plots show 

normalized 10-minute load statistics vs. mean wind speed. 
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4.3. Ensemble models of deterministic neural networks 
 

As discussed in Section 4.1, one way to consider the statistical uncertainty due to limited training data 

is to train an ensemble of deterministic models. In order to avoid the effect of aleatory uncertainty 

(which in our load simulation example is represented by the realization-to-realization uncertainty in the 

turbulence boxes), the ensemble model has to be trained on results averaged over all realizations at each 

sample point.  Figure 42, left illustrates the effect the averaging over multiple realizations on the 

variation in blade root flapwise bending moments as function of wind speed. The scatter in the averaged 

loads (red dots) is less than the scatter from single realizations (black dots) showing that some of the 

uncertainty has been reduced. A large part of the remaining scatter is due to the influence of other 

variables (turbulence, wind shear and air density) that are not in the plot axes.  

Taking the average �̅� over the 20 realizations simulated at each sample point 𝐱, we obtain a dataset of 

2,000 input/output pairs. 1,600 of the data points are designated as a training set. An ensemble of 

𝑁𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 15 FNN models are trained, by drawing 15 bootstrapped samples from the training set. 

Each sample is drawn by generating a set of random integers in the range of 1 to 1,600, followed by 

selecting the (𝐱, �̅�) data pairs whose location in the training set corresponds to the randomly generated 

integers. Each sample has a size of 1,600 which is equal to the entire training set size, however the 

samples are not identical as the data are drawn while allowing repetitions of the indexes. The ensemble 

model is implemented with the Hipersim package (Dimitrov, 2022), that includes FNN model 

capabilities. The individual FNN models have two hidden layers with 20 units each. According to earlier 

experience (Schröder, et al., 2018), this model size is adequate for the current purpose, and changes 

within a certain range do not have a significant influence on the model performance. The activation 

function is tanh (hyperbolic tangent). The training algorithm used is adam (Kingma & Ba, 2017), with 

learning rate of 0.001, and training takes place over 100 epochs.  

Model testing is carried out on the 𝑁𝑡𝑒𝑠𝑡 = 400 data points that are not used in the training. Predictions 

are obtained from each of the models in the ensemble, and the model residuals are computed as:  

𝜀𝑔,𝑖𝑗 = �̅�𝑗 − 𝑔𝑖(𝐱𝑖𝑗, 𝛉𝑖), 𝑖 = 1 … 𝑁𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 , 𝑗 = 1 … 𝑁𝑡𝑒𝑠𝑡 

For each sample point 𝐱𝑗, the model uncertainty is characterized by the standard deviation 𝜎𝜀𝑔,𝑗
 of the 

residuals 𝜀𝑔,𝑖𝑗 over all indexes 𝑖 = 1 … 𝑁𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 and for the same value of 𝑗. A histogram of these 

uncertainties over the test data set is shown in Figure 42, center plot, with orange bars, for the blade 

root flapwise bending moment extremes.  

It is relevant to compare the magnitude of the epistemic uncertainty with that of the aleatory uncertainty 

caused by the realization-to-realization variations in the load outputs. For that purpose, we evaluate the 

uncertainty in the individual simulation outcomes 𝐲 as well as for the averaged values, �̅�: 

𝜎𝜀𝑦
= √

∑ (𝐲𝑘 − �̅�)2𝑁𝑘
𝑘=1

𝑁𝑘
,        𝜎𝜀�̅�

=
𝜎𝜀𝑦

√𝑁𝑘

, 

where 𝑁𝑘 is the number of realizations. The histograms of 𝜎𝜀𝑦
 and 𝜎𝜀�̅�

 are plotted in Figure 42, center 

plot, with blue and green bars respectively. The realization-to-realization uncertainty is seen to cause 

much larger variation in the loads compared to the model uncertainty, however averaging over multiple 

realizations bring the model uncertainty and the aleatory uncertainty to similar magnitudes. This 

outcome however is just a snapshot of the uncertainty magnitudes for this specific experimental design. 

As mentioned earlier, the realization-to-realization uncertainty in the mean �̅� decreases with increasing 
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number of independent realizations, while the model uncertainty evaluated here is dependent on the 

training sample size and decreases with increased number of training points. The latter is illustrated in 

Figure 43, which shows the distribution of the model uncertainty for three different training set sizes. 

Finally, given that the aleatory and epistemic uncertainty discussed in the present problem have 

different sources, it is expected that they are uncorrelated. This is confirmed by the right-hand-side plot 

in Figure 42, which does not indicate any dependence between the two uncertainty types. The overall 

significance of these observations is that both increasing the sample size and the number of realizations 

per sampling point should be beneficial in terms of uncertainty reduction.  

 

Figure 42: Comparison of epistemic (model) uncertainty and aleatory (realization-to-realization) 

uncertainty effects for extreme blade root flapwise bending moments. Left: scatter plots raw data 

including aleatory uncertainty and averages over multiple seeds (realizations) at each sample point; 

Center: histograms of the model uncertainty compared to the realization-to-realization uncertainty; 

Right: correlation between the model uncertainty and the realization-to-realization uncertainty. 

 

 

Figure 43: Epistemic uncertainty distributions for three different training sample sizes 
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4.4. BNN models with epistemic and aleatory uncertainty 
 

Bayesian inference (Tiao & Box, 1992) is a statistical model calibration technique where the main goal 

is to determine (infer) the joint probability distribution of the model parameters 𝛉 that can best explain 

a set of observations. As the name suggests, this approach makes use of the Bayes theorem, and the 

posterior (updated according to observations) distribution 𝑝(𝛉|𝐲) is obtained by maximizing a 

likelihood function 𝑝(𝐲|𝛉) combined with a prior assumption about the marginal distribution 𝑝(𝛉): 

𝑝(𝛉|𝐲) = 𝑐𝑝(𝐲|𝛉)𝑝(𝛉) 

where 𝑐 is a normalization coefficient needed to ensure that 𝑝(𝛉|𝐲) is a valid probability distribution 

with ∫ 𝑝(𝛉|𝐲)𝑑𝛉 = 1.  

Bayesian inference is especially useful for applications where the models are based on analytical 

functions or numerical models with only a few tunable parameters (Conti, et al., 2021), (Dimitrov, et 

al., 2016). For such problems it is relatively straightforward to infer the complete posterior distribution 

𝑝(𝛉|𝐲) including terms that describe the dependence between model parameters such as e.g. the off-

diagonal terms of the covariance matrix 𝚺𝜃𝜃. However, in many function approximation models such 

as Neural Networks, the number of model parameters is very large which makes the inference of a full 

parameter covariance matrix (and hence the joint distribution) an untenable task. As an example, the 

FNN model described earlier in Section 4.3 with four inputs, one output and two hidden layers with 20 

units each, has a total of 541 trainable parameters in its deterministic version. Applying standard 

Bayesian inference to establish the joint distribution of these parameters would require determining a 

total of 146,882 additional quantities. However, obtaining an approximate probabilistic representation 

𝑝(𝛉|𝐲) for a Neural Network model is still possible under one key assumption: since the dependence 

between model parameters is expected to be weak, the covariance matrix 𝚺𝜃𝜃 can be considered as a 

diagonal matrix (Blundell, et al., 2015). The weak dependence assumption is supported by the nature 

of the Neural Network parameters that have no concrete physical meaning – and hence no conditions 

to imply dependence. With this simplifying assumption, the total number of trainable parameters is 

approximately double that of a deterministic Neural Network model.  

Several practical implementations of BNNs are included in publicly available software libraries. For 

the present study we use an implementation from the tensorflow-probability package in Python 

(Sountsov, et al., 2019). The probabilistic parameters are introduced to the model by replacing one or 

more of the standard fully connected hidden layers (also referred to as “dense” layers), Figure 44, with 

so-called “variational” layers. In the variational layers, the weights and biases are represented by their 

means and standard deviations following the assumptions discussed above. As discussed in Section 4.1, 

having variational layers in the model (i.e., having a model with probabilistic parameters) allows 

capturing the epistemic uncertainty. In addition, the BNN architecture can also be tailored to capture 

aleatory uncertainty, by defining the output layer as probabilistic – where the output quantities are 

considered realizations from a (joint) probability distribution with parameters conditional on the model 

coefficients in previous layers. This is an example of what is referred to as “Models with probabilistic 

outputs” in Section 4.1.  
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Figure 44: Illustration of a Feedforward Neural Network (FNN) with three hidden layers. 

Using the tensorflow-probability BNN implementation, we train three model examples where different 

parts of the model are considered probabilistic and as a result the uncertainty is treated in a different 

way. The model architecture in terms of number of layers and units is retained from the deterministic 

FNN model considered earlier – with 2 hidden layers and 20 units in each layer. Model training is done 

using the Adam solver, and the cost function is a negative log-likelihood function proportional to 

𝑝(𝐲|𝛉)𝑝(𝛉). For all models, the parameter probability distributions as well as the output probability 

distributions are considered jointly Gaussian. An overview of the three BNN models is provided in 

Table 18, compared to the setup of a deterministic model with the same general architecture. 

Table 18: Overview of FNN and BNN models 

Model # Inputs Hidden layer 1 Hidden layer 2 Output layer Uncertainty captured 

1 

𝑢, 𝜎𝑢, 𝛼, 𝜌 

Dense  

(linear + activation) 

Dense Linear None (epistemic in case an 

ensemble model is trained) 

2 Dense Dense Gaussian Aleatory (𝛆𝑦) 

3 Variational Variational Linear Epistemic (𝛆𝑔) 

4 Variational Variational Gaussian Aleatory and epistemic 

(𝛆𝑦 + 𝛆𝑔) 

 

BNN model training is carried out on the full aeroelastic load data sets, without averaging over different 

realizations. In this way the aleatory uncertainty is retained in the output data and can be captured by 

the BNN model. The data are split into a training set consisting of 20 realizations at each of 1,600 

sample points, a total of 32,000 data points. The test set covers 400 sample points with 20 realizations 

each, or a total of 8,000 data points. 

Figure 45 illustrates the behavior of the FNN and BNN models depending on the types of uncertainty 

taken into account, for one selected load quantity, the blade root flapwise bending moment extremes. 

The blue dots show data points representing the outcomes from aeroelastic simulations, as function of 

mean wind speed. The scatter is due to realization-to-realization uncertainty as well as due to the effect 

of other variables (turbulence, wind shear and density) that are not considered in the plot. The red dots 

and lines show model predictions for wind speed inputs varying from cut-in to cut-out speed, with the 
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other three input variables held constant (meaning we can expect somewhat lower variance in the model 

predictions compared to the full data set). The top left plot in Figure 45 shows the outputs of an 

ensemble of deterministic models trained as described in Section 4.3 (model #1 in Table 18). The top 

right plot shows the outputs of model #2 where just the output layer is probabilistic, treating all 

uncertainty as aleatory. The bottom left plot shows model #3 where only one hidden layer is 

probabilistic, thus capturing part of the epistemic uncertainty. Finally, the bottom right plot shows the 

predictions from model #4, a BNN with both a variational hidden layer and a probabilistic output layer. 

There is both an estimate of epistemic uncertainty and the aleatory uncertainty, and the variation in the 

output predictions is the combination of the two uncertainty sources.  

 

Figure 45: Comparison of probabilistic models on the prediction of blade root flapwise extreme 

bending moments. Top left: deterministic model not considering any uncertainty, top right: model 

considering all uncertainty as aleatory, bottom left: model taking only epistemic (model) uncertainty 

into account, bottom right: a model that considers both epistemic and aleatory uncertainties. 

Figure 46 shows a scatter plot of the predictions of model #4 for the entire test data set, compared to 

the actual load outcomes of the same data set. Since in this example the inputs to the BNN model are 

exactly the same as the inputs to the load simulations, we should expect that with an adequate model 

the distribution of the model predictions will overlap with the distribution of the full data. We can see 

that this is the case for the blade root flapwise extreme bending moments. In the following section, the 

BNN model performance assessment is extended to other relevant load channels. 
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Figure 46: Scatter plot of wind turbine blade flapwise minima predictions from a BNN model 

compared to the true load results for the same input conditions. 

 

4.5. BNN model performance assessment 
 

As discussed in Section 4.2, the wind turbine design load assessment considers multiple limit states, 

and the performance of a load surrogate model needs to be assessed in different ways depending on the 

quantity of interest. Further, some standard performance measures like coefficient of determination (R-

squared) and Root Mean Squared Error (RMSE) are not directly applicable for probabilistic models. As 

a result, the model performance assessment is based on comparison of the output probability 

distributions using the following criteria:  

- Exceedance probabilities (distribution tails) for channels representing 10-minute extremes; and  

- Probability densities (pdfs) as well as Kullback-Leibler divergence (KL divergence, describing 

the difference between probability distributions (Kullback & Leibler, 1951)) for channels 

representing 10-mean values as well as those representing Damage-Equivalent Loads (DELs).  

We compare the BNN model with variational layers and distribution output (model #4 in Table 18) 

against an ensemble model where both the epistemic and aleatory uncertainty have been taken into 

account using the approach described as “model with probabilistic outputs” in Section 4.1. With this 

approach, the output is considered to follow a Gaussian probability distribution due to the aleatory 

uncertainty, 𝛆𝑦, and a separate model is trained to predict each of its distribution parameters conditional 

on the inputs. In order to account for the epistemic uncertainty, 𝛆𝑔 , the model that predicts the 

conditional mean is actually an ensemble of multiple deterministic models. Sampling from the model 

constructed with this approach (simply referred to as “ensemble model” below), happens as following: 

1) at a given input combination, 𝐱𝑗, run the 𝑁𝑘 ensemble models to obtain the mean predictions 

�̅�𝑘|𝐱𝑗, 𝑘 = 1 … 𝑁𝑘. Compute �̅�|𝐱𝑗 and 𝛔𝛆𝑔
|𝐱𝑗 as the mean and standard deviation of the predictions, 

respectively. 2) call the separate model that estimates 𝛔𝛆𝑦
|𝐱𝑗. 3) Draw two random numbers (or vectors 

in the case of multiple outputs), 𝐅𝛆𝑔
 and 𝐅𝛆𝑦

, from a uniform distribution in the range (0,1). 4) Compute 

the final estimate:  



 

78 

 

𝐲𝑗 = �̅�|𝐱𝑗 + (𝛔𝛆𝑔
|𝐱𝑗) Φ−1 (𝐅𝛆𝑔

) + (𝛔𝛆𝑦
|𝐱𝑗)Φ−1 (𝐅𝛆𝑦

) 

An ensemble model based on the above procedure as well as a BNN model are trained on each of the 

14 signals listed in Section 4.2. The training uses the same 32,000 data points as defined in Section 4.4. 

Since the comparisons involve tail probabilities, it is important to include as many rare events as 

possible, therefore the evaluation of the model performance are based on all the 40,000 data points 

available. Figure 47 shows the fatigue damage-equivalent load (DEL) probability distribution 

predictions for six load channels, while Figure 48 shows a comparison of the exceedance probabilities 

in the tail distributions of the extremes for four load channels. The agreement in the density functions 

is good except for the shaft torsion, where both surrogate model approaches have some difficulties. A 

potential explanation is that at around rated wind speed the shaft torsion exhibits some scatter (see 

Figure 41) due to changing controller regimes, which is poorly correlated with the input conditions and 

hence difficult to explain by a surrogate model. In all the plotted cases (DEL and extremes) the BNN 

shows similar or even superior performance than the ensemble model approach.  

 

Figure 47: Comparison of the probability densities of fatigue damage-equivalent load predictions 

from a BNN model and an ensemble of deterministic models, for six wind turbine load signals.  
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Figure 48: Comparison of the tail probability distribution predictions by a BNN model and an 

ensemble of deterministic models, for four load channels.  

 

The shapes of the probability distributions shown in Figure 47 and Figure 48 are governed by two 

factors: one is the conditional dependence of the loads on the input conditions, and the second is the 

distributions of the uncertainties (epistemic and aleatory). For the extreme load cases as those shown 

on Figure 48, it is likely that the most critical response can happen within a limited range of the input 

variables. In such a situation, the tail of the extremes distribution may just contain a few events within 

a narrow range of conditions, and the shape of the tail will then be dominated by the distribution of the 

uncertainties 𝛆𝑔 and 𝛆𝑦. In the present study all models assume Gaussian distributions of the 

uncertainties, meaning that the shape of the tails predicted by the surrogate models will resemble that 

of a Gaussian distributed variable. The plots shown in Figure 48 indicate that for some load channels 

the distribution of the largest extremes can deviate from Gaussian.  
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Figure 49: Comparison of the probability densities of the predictions from a BNN model and an 

ensemble of deterministic models, for the mean values of four wind turbine load signals. 

Figure 49 compares the probability density predictions for the mean values of four signals. Just as with 

the damage-equivalent loads, the prediction of the mean shaft loads probability density is less accurate 

than for the other channels, and this is likely due to the same reasons. Regarding the power output, rotor 

rpm, and blade pitch signals, the model predictions seem to agree well with data, however interpretation 

of these signals is difficult because they all have a certain fixed (nominal) value for a broad range of 

input conditions, which creates a large delta function-like peak in the probability distributions.  

As means of quantitative comparison between distributions, we consider the Kullback-Leibler (KL) 

divergence that is a measure of the difference between the true distribution of the data, 𝑃(𝐲), and the 

distribution of the model predictions, 𝑄(𝐲). In a discretized form, the KL divergence is computed as: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝐲) log (
𝑃(𝐲)

𝑄(𝐲)
)

𝐲

 

Due to the specifics of the mean results for power, blade pitch and rotor rpm discussed above, these 

signals are not included in the assessment of their KL divergence. For the remaining signals under 

consideration, the KL divergence of the model predictions with respect to the data are listed in Table 

19. 

Table 19: KL divergence of model prediction probability distributions with respect to load simulation 

data distributions. Green shading indicates that one of the two models has smaller KL divergence for 

the particular signal, while yellow shading shows cases with less than 5% difference between the two 

models.  
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Channel name 𝑫𝑲𝑳, ensemble model 𝑫𝑲𝑳, BNN model 

Tower base 𝑀𝑥 DEL 8.18 ⋅ 10−5 4.08 ⋅ 10−5 

Tower base 𝑀𝑦DEL 1.27 ⋅ 10−4 1.94 ⋅ 10−4 

Tower top 𝑀𝑧 DEL 8.86 ⋅ 10−5 1.44 ⋅ 10−4 

Blade root 𝑀𝑥 DEL 2.21 ⋅ 10−4 1.66 ⋅ 10−4 

Blade root 𝑀𝑦 DEL 4.97 ⋅ 10−4 6.17 ⋅ 10−4 

Shaft 𝑀𝑧 DEL 5.35 ⋅ 10−3 3.92 ⋅ 10−3 

Tower base 𝑀𝑥 MAX 4.27 ⋅ 10−5 4.38 ⋅ 10−5 

Tower base 𝑀𝑦 MAX 3.00 ⋅ 10−4 4.70 ⋅ 10−5 

Blade root 𝑀𝑥 MIN 1.49 ⋅ 10−4 1.57 ⋅ 10−4 

Blade root 𝑀𝑦 MAX 9.31 ⋅ 10−4 4.40 ⋅ 10−4 

Shaft 𝑀𝑧 Mean 9.22 ⋅ 10−3 9.25 ⋅ 10−3 

 

For many of the investigated channels, the KL divergence of the BNN models is smaller than that of 

the ensemble model. The differences in the distributions are not significant enough to claim that the 

BNN model is decisively superior, however the results clearly show that BNNs could be at least as 

accurate as their alternatives and can be a promising approach for running probabilistic wind turbine 

load surrogates.  

 

4.6. Multivariate models using BNNs 
 

Throughout the description of the present study we have maintained the vector notation for the model 

outputs 𝐲. This is to remind that while the majority of the discussed models have scalar outputs, the 

entire setup is easily extendable to models with multiple outputs – as long as there is a parametric 

probability distribution that can describe the joint probability of these multiple outputs. Given that the 

present modelling setup only uses Gaussian distributions, predicting multiple outputs is straightforward 

by assigning a multivariate Gaussian distribution to the outputs. During the training process the means 

and the variances of each of the output signals will be inferred, as well as their covariance. A 

demonstration of the outcome of such a model choice is shown in Figure 50. 

 

Figure 50: Comparison of bivariate probability density prediction from a BNN model to the 

probability density of a reference data set. Left: probability density contours from load simulations; 

Right: probability density contours from BNN model.  
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4.7. Conclusions on the use of BNN as load surrogates 
 

This study demonstrated how Bayesian Neural Networks (BNNs) can be used as probabilistic surrogate 

models for wind turbine load and power prediction. Their performance was evaluated with the 

aeroelastic model of a commercial multi-megawatt turbine, and compared against the performance of 

an alternative probabilistic surrogate based on an ensemble of deterministic Feedforward Neural 

Networks (FNNs). The main conclusions are the following: 

- BNNs are a viable option for building a probabilistic surrogate model that can both take 

epistemic and aleatory uncertainties into account; 

- Compared to an ensemble FNN model, the BNN were shown to have equal or superior 

performance in modelling the probability distribution of load and power outputs – while being 

computationally more efficient. This shows the potential of BNNs as surrogates for fatigue load 

and power prediction; 

- The way the tail behavior is modelled is driven by the choice of the posterior distribution 

functions – using a joint Gaussian prescribes a Gaussian-like tail. As a result, the tail probability 

predictions are very similar to those from an ensemble model where the aleatory uncertainty is 

modelled as a Gaussian distribution too.  

- The realization-to-realization uncertainty in the load simulations seems to be non-Gaussian, 

hence a more complex model with a non-Gaussian posterior may be required (but not 

guaranteed) to improve the tail prediction capabilities. 

For the type of problems presently discussed, BNNs may be an efficient alternative to Gaussian models 

as they show high computational performance and uncertainty prediction capabilities, while lacking the 

limitations of the Gaussian models in terms of deteriorating computational efficiency for large sample 

sizes. 
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5. Conclusions 
 

Within this report, we documented two complementary approaches to perform surrogate modelling of 

complex aero-servo-elastic simulations: transient response surrogates based on the newly developed 

manifold-autoregressive with exogenous inputs modelling (mNARX) methodology, and stochastic 

simulation of 10-minute aggregate quantities (DEL and Max Load) with Bayesian neural networks 

(BNN).  

Both metamodeling approaches exhibit robust and accurate performance according to various accuracy 

metrics. They significantly outperform the original requirement of one order of magnitude speedup with 

respect to full numerical simulations, with training costs in the order of 
2 4(10 )EDN O . 

We therefore conclude that both surrogate modelling methods can be used to significantly speedup ASE 

simulations, and therefore enable fully quantitative and uncertainty-aware wind turbine design 

practices. 
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