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Abstract:

Wind energy companies constantly deploy cutting-edge wind turbines to reach unexploited wind resources.
In these highly uncertain environments, numerical models simulating such systems can be used to assess the
performance and reliability of wind turbines. This numerical procedure is often computationally expensive.
However, promising new kernel-based techniques aim at simplifying such a computational burden. This report
first demonstrates the use of a fast sampling technique on the numerical model simulating a real offshore wind
turbine operating in Teesside, UK. This sampling method conveniently extracts a small number of relevant
input points (i.e., environmental conditions) from a measured data set to be used as simulation inputs for the
estimation of cumulative lifetime damage. Secondly, a reliability analysis is conducted on additional sources of
uncertainties related to the system itself (e.g., yaw misalignment, soil stiffness, and material properties). As
the risk measure estimated in this reliability analysis presented an important sensitivity to the critical damage
threshold, a perturbation-based robustness analysis was also applied on the threshold. Finally, the impact of
the wake on the reliability and robustness related to fatigue damage was studied, using the wake modeling
results from Work Package 3.
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1 Introduction

1.1 Industrial context and motivations

Offshore wind turbine (OWT) new technologies tend to reach for more difficult and uncertain environmental
conditions. This industry needs probabilistic tools to manage risks associated with OWT operation and mainte-
nance. To do so, industrial and academic players put much effort in order to develop simulators such as costly
multi-physics computational tools (such as, e.g., the DIEGO tool developed by EDF R&D, see Milano et al.,
2019). Such computational models often require to be deployed on high-performance computing (HPC) facility
in order to be used intensively in industrial studies.

In order to simulate realistic OWT cases, several sources of uncertainties have to be taken into account. If it
seems obvious, in the OWT field, that environmental conditions (also known as “metocean” conditions) play a
major role as an uncertainty source, one must also admit that other variables are tainted with uncertainty, either
arising from a kind of variability (e.g., the soil mechanical properties) or describing the lack of knowledge about
some system parameters or, finally, trying to encompass some modeling approximations.

To properly take all these uncertainties into account and to provide efficient predictive tools for a more robust
decision-making, a global methodology has been developed from the last 30 years in the Uncertainty Quantification
(UQ) community (De Rocquigny et al., 2008; Smith, 2014; Sullivan, 2015). This methodology is briefly recalled
in the next subsection.

1.2 Uncertainty quantification framework

The field of UQ in computer simulation emerged mostly from, or at least, in parallel with, the field of the design
and analysis of computer experiments (Santner et al., 2003; Fang et al., 2006). The UQ methodology is made
of several steps which enable to idenfity and model the various sources of uncertainties, then to propagate them
through the computer model, and finally to estimate a quantity of interest (Qol). In addition to this “forward”
UQ, a “backward” analysis can be realized in order to perform calibration or sensitivity analysis. In the following
paragraph, the overall methodology is briefly presented. However, the reader is invited to refer to the textbooks
by De Rocquigny et al. (2008); Smith (2014); Sullivan (2015) or to the recent tutorial by Blanchard et al. (2023)
for a concise and updated overview.

Figure 1.1 illustrates the main steps of the generic uncertainty quantification method, which are briefly sum-
marized hereafter:

= Step A — Problem specification: This step involves identifying the system under study and constructing
a numerical model capable of accurately simulating its behavior. Specifying the problem also involves
defining a set of parameters inherent to the numerical model. These parameters include both the input
variables and the output variables produced by the simulation. In this document, the numerical model is
considered a black box, as opposed to approaches that are integrated into the numerical solution schemes
for the system's behavioral equations (referred to as “intrusive approaches” Le Maitre and Knio, 2010). In
general, numerical models are first calibrated against measured data and undergo a process of validation
and verification to reduce modeling errors (see, e.g., Oberkampf and Roy, 2010; Damblin, 2015; Carmassi,
2018).

= Step B — Uncertainty modeling: The goal of this step is to identify and model all sources of uncertainty
associated with the input variables. In most cases, uncertainty is modeled in the probabilistic framework
(Sullivan, 2015), but other approaches could be considered (Ajenjo, 2023).

= Step C — Uncertainty propagation: This step propagates the uncertain inputs through the computer
model. As a result, the output of the numerical model (usually scalar) also becomes uncertain. The goal
is to estimate a quantity of interest, which is a statistic related to the random output variable under study.
The uncertainty propagation method may differ depending on the quantity of interest targeted (e.g., a
moment, a quantile, a rare event probability) (Morio and Balesdent, 2015).

= Step C’ — Inverse analysis: In this step, either calibration or sensitivity analysis can be performed to study
the role allocated to each uncertain input leading to the uncertain output.

= Metamodeling: Given the high computational cost associated with some simulations, statistical techniques
can be used at the step A to emulate these expensive simulators with a limited number of simulations. UQ
can then be performed using a “surrogate model” (or “metamodel™) to reduce the computational cost. This



L 1 INTRODUCTION

Step C: Uncertainty propagation

Step A: Problem specification

Step B: Uncertai Variabl Quantiti
. ncertain - ariables uantities
iy ?m y inputs Numerical model of interest of interest
modeling : f

Decision

| Step C’: Inverse analysis‘ e

Figure 1.1: General uncertainty quantification framework (De Rocquigny et al., 2008, adapted by Ajenjo, 2023).

step is often essential in practice to perform UQ.

All in all, this step-by-step methodology serves only as a set of guidelines for the analyst to better identify
what is needed to achieve a complete UQ analysis. For a particular use case, it is obvious that no generic approach
can be used as a “plug-and-play” approach. Usually, a lot of effort has to be put into tuning existing methods
and adapting techniques with respect to the intrinsic difficulties imposed by the case. As will be shown in the
rest of this report, the overall goal is to apply this methodology (at least a part of it) to a challenging offshore
wind turbine case for which performing UQ should help to assess the reliability and robustness of a given design.

1.3 Deliverable objectives and structure of the report

The present report is the SMART Deliverable N°4.3 of the HIPERWIND! Project, and in particular the WP4,
whose main objectives are to develop and validate mathematical models for structural reliability. Therefore, the
proposed developments should support probabilistic design in practice in line with the Specific Objective #3
(S03) of the project? while maintaining consistency with the design load case approach currently used in the
international design standards (IEC-61400-1, 2019). In particular, this work is dedicated to the treatment of the
Task 4.3 entitled “Reliability for fatigue limit states” and is thus limited to the consideration of fatigue damage.
Note that most of the contributions were adapted from the PhD thesis of Fekhari (2024).

To sum up, the scientific objectives tackled in this report as listed below:

f

> (O1) — Provide an updated overview of the main state-of-the-art techniques in the field of UQ for
OWT, especially in the areas of damage calculation and fatigue reliability.

> (02) — Identify the limitations of the methods available in the literature and to propose new
innovative techniques for OWT mean damage calculation and reliability assessment. These methods
will be challenged and, if possible, validated through the realistic use case.

> (03) — Propose methods to evaluate the robustness of reliability estimates with respect to different
uncertainty modeling hypotheses, as well as scale effects that occur when moving from a single
turbine to a wind farm (e.g., considering the wake effect).

These three objectives are clearly challenging and necessitate, in order to be solved, relying on a large panel of
methods, implying their own formalism, their own hypotheses as well as their own limitations. For these reasons,
this report not only provides reminders of theoretical elements when necessary, but also illustrates the proposed
methods on toy cases for the sake of clarity and pedagogy. Finally, numerical results are always discussed and
synthesis subsections are provided to help the reader to get the most useful information at the end of each section.

The structure of this report is as follows. After this introductory section, Section 2 is devoted to the presen-
tation of the main industrial use case studied in this report: the Teesside case and its numerical modeling and

L“Highly advanced Probabilistic design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND”
2503: Develop an efficient reliability calculation framework, that treats uncertainties in a consistent manner and makes a full
probabilistic design approach feasible (WP4).
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simulation. Then, Section 3 deals with the modeling and quantification of input uncertainties (both the environ-
mental and the system uncertain inputs), and states the problem of probabilistic fatigue assessment, i.e., damage
calculation. Sections 4 and 5 follow with contributions on mean damage estimation: first with a kernel-based
approach, then with a spectral approach. Section 6 goes a step further by addressing the problems of reliability
assessment, i.e., computing a failure probability in the context of a fatigue limit-state, as well as providing tools
to quantify the robustness of such an estimate with respect to the input probabilistic modeling of both resistance
and stress variables. As for Section 7, it proposes a very similar study (reliability and robustness assessment),
but including the wake effect and the wind farm scale effect. Finally, Section 8 provides a general conclusion and
draws some perspectives for future research.

2 Teesside multi-physics wind turbine model

2.1 Introduction

Wind energy is a highly competitive industry with increasing regulations regarding its impact on ecosystems,
land and sea use, landscapes, or air traffic management (Beauregard et al., 2022). During the long process of
winning calls for tenders, obtaining construction permits, or through wind farm exploitation, an advanced technical
understanding of such systems might offer a competitive advantage.

The operation of offshore wind turbines (OWTs) is driven by multiple physics coupled. This behavior results
from different external effects which are highly turbulent and uncertain. Among them, the metocean (abbreviation
of “meteorology” and “oceanography”) environmental conditions play a primary role. Yet, many other types of
external factors affect the exploitation of offshore wind turbines such as the corrosion of the structure, global
scour, marine growth, stress concentration factor induced by the manufacturing process, etc.

In this context, numerical models have been developed to certify the structural integrity of OWTs w.r.t.
external stresses. A wind farm project planned at a given location should pass different validation procedures
(regarding fatigue, ultimate loads, buckling, serviceability, etc.) established by international standards such as the
International Electrotechnical Commission (IEC-61400-1, 2019). As wind turbine structures face a large number of
stress cycles in their lifetime (up to 10® for 25 years of operation), this section will particularly focus on modelling
fatigue damage assessment. The present work applies different steps of the UQ methodology on an industrial use
case using elements from the PhD thesis of Fekhari (2024).

2.2 Numerical simulation model

An OWT is a complex system interacting with its environment. However, multi-physics numerical models allow
to simulate its response against a set of stresses. The use case considered here is a model of a Siemens SWT
2.3MW bottom-fixed turbine on a monopile foundation (see the datasheet in Table 2.1), operating since 2014 in
Teesside, UK (see the wind farm layout and wind turbine diagram in Fig. 2.2). This simulation model consists of
a chain of three numerical codes executed sequentially. As illustrated in Fig. 2.1, a simulation over a time period
is the sequence of, first, a turbulent wind speed field generation, then an OWT simulation (computing various
outputs including mechanical stress), and finally, a post-processing phase to assess the fatigue damage of the
structure.

TurbSim Wind speed DIEGO Multi-axial stress ~ Rainflow, Miner
Wind Turbulent wind field Wind turbine time series Damage
variables generation simulation assessment
TWave TSystem
variables variables

Figure 2.1: Diagram of the chained OWT simulation model.

The first block of the chain consists of a turbulent wind field simulator called “TurbSim" (developed by
Jonkman, 2009 from the National Renewable Energy Laboratory, USA) that uses, as a turbulence model, called
the Kaimal spectrum (Kaimal et al., 1972), as recommended by the IEC-61400-1 (2019) standards. Moreover, to
extrapolate the wind speed vertically, the shear is modeled by a power law. Since the wind field generation shows
inherent stochasticity, each 10-minute long simulation is repeated with different pseudorandom seeds and one
averages the estimated damage over these repetitions. This question has been widely studied by some authors,
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Table 2.1: Teesside OWT datasheet.

Siemens SWT-2.3-93

Rated power 2.3 MW
Rotor diameter 93 m
Hub height 83 m

Cut-in, cut-out wind speed 4 m/s, 25 m/s

(e.g., Slot et al., 2020), who concluded that the six repetitions recommended by the IEC-61400-1 (2019) may be
insufficient to properly average the effect of stochasticity. Thus, in the following, the simulations are repeated
eleven times (picking an odd number also directly provides the median value over the repetitions). This number
of repetitions was chosen to suit the maximum number of simulations and the storage capacity of the generated
simulations.

In the second block, “DIEGO" software (for “Dynamique Intégrée des Eoliennes et Génératrices Offshore”?)
is a numerical model developed by EDF R&D to simulate the aero-hydro-servo-elastic behavior of OWTs in
the time domain. Different extensive code-to-code comparisons between DIEGO and other aero-hydro-servo-
elastic models showed comparable results. For instance considering bottom-fixed OWT (Popko et al., 2021) or
floating OWT (Robertson et al., 2020; Kim et al., 2022), DIEGO was compared to “OpenFAST" (developed by
NREL), “HAWC2" (developed by DTU), “BLADED" (developed by DNV), and “DeepLines Wind" (developed by
Principia).

This code relies on a flexible multibody approach to model the nonlinear structural dynamics and uses Morison's
equation together with a first-order potential solution to simulate the hydrodynamics (Milano, 2021). It takes the
turbulent wind speed field generated by TurbSim as input and computes the dynamical behavior of the system
(including the multiaxial mechanical stress at different nodes of the structure). For the application of interest, the
control system is modeled by the open source DTU controller (Hansen and Henriksen, 2013).As for the waves, they
are modeled by the parametric wave spectrum is named “JONSWAP", for the “JOint North Sea WAve Project”
(Hasselmann et al., 1973). Further details regarding wind turbine model and the software used are provided in
Capaldo et al. (2021). To avoid numerical perturbations and reach the stability of the dynamical system, our
simulation period is extended to 1000 seconds and the first 400 seconds are cropped in the post-processing step.
This chained OWT numerical simulation model has been deployed on an EDF R&D HPC facility to benefit from
parallel computing speed up (a single simulation on one CPU takes around 45 minutes).

2.3 Fatigue assessment

As described in Fig. 2.1, a typical DIEGO simulation returns a 10-minute multiaxial stress time series at each node
1 € N of the one-dimensional meshed structure. Since classical fatigue laws are established for uniaxial stresses,
the first step is to compute one equivalent Von Mises stress time series at each structural node.

The foundation and the tower of an OWT are a succession of tubes with various sections connected by bolted
or welded joints. The proposed work focuses on the welded joints at the mudline level, identified as a critical area
for the structure. This hypothesis is confirmed in the literature by different contributions, see e.g., the results
of Miiller and Cheng (2018, Fig. 12), or Katsikogiannis et al. (2021). At the top of the turbine, the fatigue
is commonly studied at the blade root, which was not studied here since the blades in composite material have
different properties (see e.g., Dimitrov, 2013). Note that the OWT simulations provide outputs allowing us to
similarly study any node along the structure (without any additional computational effort).

To compute fatigue in a welded joint, the external circle of the welding ring is discretized for a few azimuth
angles 6 € R, (see the red points in the monopile cross-section on the right in Fig. 2.3). The equivalent Von
Mises stress time series is then reported on the external welding ring for an azimuth 6. According to Li and
Zhang (2020) and our own experience, the most critical azimuth angles are roughly aligned with the main wind
and wave directions (whose distributions are illustrated in Fig. 2.3). Looking at these illustrations, the wind and
wave conditions have a very dominant orientation, which is explained by the closeness of the wind farm to the
shore. Then, it is assumed that azimuth angles in these directions will be more stressed, leading to higher fatigue

3In English, “Integrated Dynamics of Wind Turbines and Offshore Generators".
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Figure 2.2: Teesside wind farm layout (left). Monopile OWT diagram from (Chen et al., 2018) (right).

damage.

To assess fatigue damage, rainflow counting (Dowling, 1972) first identifies the stress cycles and their respective
amplitudes (using the implementation of the ASTM E1049-85 rainflow cycle counting algorithm from the Python
package rainflow*). Then, for each identified stress cycle of amplitude, s € R, the “Stress vs. Number of
cycles” curve (also called the “S-N curve” or “Wéhler curve”) allows one to estimate the number N, of similar
stress cycles necessary to reach fatigue crack initiation. A well-admitted simplification of the S-N curve is to
consider it as log-linear on two segments with slopes (—my, —m2) € RZ and intercepts (log(ay),log(az)) € R%:

log(ay) —mq log(s), for s € [Smin, Se)

log(Ne(s)) = { (2.1)

log(as) — molog(s), for s € [Se, Smax] s

where N is the predicted number of cycles to failure for stress range s, Smin is the minimal (resp. maximal) stress
range identified by the rainflow counting, and s, is the stress range axis of the intersection of the two log-lines
formed by the S-N curve.

The expression of this curve in two linear segments arises from the concept of endurance limit of a material,
denoted by se, under which the effect of fatigue on a material should be considerably smaller. According to
DNV-RP-C203 (2016), the S-N curve is altered for welded tubular joints by taking into account the tube's

thickness:
R\ ™M1
ay (s (Jﬁ) ) , for s € [Smin, Se]

R\ ~™2
as (s (ﬁ) ) , for s € [se, Smax]

with .. the reference thickness (for tubular welded joints t..f = 25 mm), t the plate thickness, and h the thickness
exponent. The numerical values considered in the present work derive from the standards DNV-RP-C203 (2016,
Sec. 2.4.6), and are reproduced in Table 2.2.

Most S-N curves are built over zero mean stress cycles, however, other empirical models such as the “Goodman
line” or the “Gerber parabola” were developed to consider various stress mean (Suresh, 1998). In these cases, the
S-N curve becomes a three-dimensional envelope depending on the number of cycles, the stress amplitude, and
the mean stress. In this work, the nonzero correction is not considered as the values of mean stress were found
to be negligible compared to the yield stress of the steel material studied.

Ne(s) = (22)

“https://github.com/iamlikeme/rainflow
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Table 2.2: S-N curve numerical values of welded tubular joints in different environmental conditions (source:
DNV-RP-C203, 2016).

Environment my | log(ay) | me | log(az) | h

Air 3.0 | 12.48 5.0 | 16.13 0.25
Seawater with cathodic protection | 3.0 | 12.18 5.0 | 16.13 0.25
Seawater free corrosion 3.0 | 12.03 3.0 | 12.03 0.25

Finally, a popular approach to compute the damage is to linearly aggregate the fatigue contribution of each
stress cycle using Palmgren-Miner’'s rule. This rule defines a cumulative damage d. by summing the fatigue
contributions of each stress cycle s7), j € {1,...,k}, regardless of their order of appearance:

1
d. = ; N (0] (2.3)

In this theory, the material reaches ultimate fatigue ruin when d. > 1. A common practice when using Palmgren-
Miner’s rule is to gather the stress cycles in a set of bins. This practice induces an integration error, which
becomes significant as the number of bins is reduced. In the following, the cumulative damage is computed
without binning, as defined in Eq. (2.3).

As alternative to Palmgren-Miner’s rule, spectral methods were also introduced to quantify fatigue damage
in the late 1980s. The main idea is to infer a probability density function (PDF) over the amplitudes of the
stress cycles identified by rainflow counting, typically using a mixture of parametric distributions. From this PDF,
one can derive the fatigue endurance and the cumulated damage (see further details in the review of Dirlik and
Benasciutti, 2021). Spectral approaches showed to be sufficient at early design phases but not ideal for some tasks
(e.g., for blades’ fatigue Ragan and Manuel, 2007). Finally, nonlinear fatigue models were developed in the 1990s
(Fatemi and Yang, 1998) to take into account the order in which the loading cycles were applied to the structure.
For OWT applications, the recent work of Rocher et al. (2020) studied a probabilistic version of nonlinear fatigue
models. Unfortunately, this refined approach requires a larger computational effort and a calibration step over
experimental tests of various parameters (Freyssinet et al., 2023).

Teeside wind speed rose Teeside wave height rose OWT tower muline cross-section
90° 90° o

.Mudline node

Figure 2.3: Angular distribution of the wind and waves with a horizontal cross-section of the OWT structure and
the mudline. Red crosses represent the discretized azimuths for which the fatigue is computed.

2.4 Synthesis

This section introduced the chain of numerical models used to assess the fatigue damage cumulated in the wind
turbine tower over time. Overall, one evaluation of this chain is the sequence of a turbulent wind generation,
a multi-physics wind turbine simulation in the time domain, and a post-processing step to assess the fatigue
damage. In the following, the uncertainties associated to the input variables should be defined.

11
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Variable Notation Unit Description

Mean wind speed U m.s! 10-min. average horizontal wind speed
Wind turbulence oy m.s™! 10-min. wind speed standard deviation
Wind direction® Owind deg. 10-min. average wind direction
Significant wave height H, m Significant wave height

Peak wave period Ty S Peak 1-hour spectral wave period
Wave direction O wave deg. 10-min. average wave direction

Table 3.1: Description of the environmental data.

3 Quantification and modeling of input uncertainties

3.1 Introduction

According to the general UQ framework described in Fig. 1.1, this section focuses on the definition of the uncertain
inputs and their corresponding probabilistic model (step B). In the following, the input variables considered as
uncertain are split into two groups (assumed independent), respectively called environmental variables and system
variables. First, the environmental variables are a collection of variables characterizing the long-term metocean
conditions near a wind farm. This source of uncertainty is empirically well-defined thanks to wind measurement
campaigns, however, it presents a complex dependence structure. The second group of uncertain inputs is related
to the wind turbine system. A wide range of uncertainties can be taken into account in such systems, such as
material properties, manufacturing quality, soil conditions, control error, corrosion, marine growth, aerodynamic
damping, etc. Among them, a restricted list of four independent variables is considered according to sensitivity
analysis results from the literature and expert knowledge (Dimitrov et al., 2018; Teixeira et al., 2019b; Velarde
et al., 2019; Petrovska, 2022).

3.2 Definition of the environmental random inputs

In the lifespan of a wind farm project, environmental data is collected at different phases. In order to decide on
the construction of a wind farm, meteorological masts with wind speed cup anemometers, and wave buoys are
usually installed on a potential site for a few years. After its construction, each wind turbine is equipped with
monitoring instruments (e.g., cup anemometers). In total, five years of wind data have been collected on the
turbines which are not affected by the wake on this site. Their acquisition system (usually called “SCADA" for
“Supervisory Control And Data Acquisition”) has a sampling period of ten minutes. The wave data arise from a
buoy placed in the middle of the farm. These data describe the physical features listed in Table 3.1. A limitation
of the present study is that its controller-induced uncertainty (like wind misalignment) is not considered.

The Teesside farm is located close to the coast, making the environmental conditions very different depending
on the direction (see the wind farm layout in Fig. 2.2). Since measures are also subject to uncertainties, a few
checks were made to ensure that the data were physically consistent. Truncation bounds were applied since this
study is focused on central tendency estimation (i.e., mean behavior) rather than extreme values. In practice, this
truncation only removes extreme data points (associated with storm events). In addition, a simple trigonometric
transform is applied to each directional feature to take into account their cyclic structure. Finally, the remaining
features are rescaled (i.e., using a min-max normalization).

Teesside's environmental data is illustrated by its copulogram in Fig. 3.1, a graphical tool to visualize mul-
tivariate data. The copulogram exhibits the marginals with univariate KDE plots (in the diagonal), and the
dependence structure with scatter plots in the normalized rank space (in the upper triangle). The scatter plots
of normalized ranks are actually a representation of the empirical copula density. In the lower triangular matrix,
the scatter plots are set in the physical space, merging the effects of the marginals and the dependencies (as in
the usual visualization offered by the matrix plot). All together, the copulogram gives a synthetic decomposition

of the dataset and was implemented in a new open source Python package named copulogram®.

5Note that the two directional variables could be replaced by a wind-wave misalignment variable for a bottom-fixed technology,
however, our framework can be directly transposed to floating models.
6GitHub repository: https://github.com /efekhari27/copulogram
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",

Figure 3.1: Copulogram of the Teesside measured data (IV = 10% in gray). Marginals are represented by univariate
KDE plots (diagonal), the dependence structure with scatter plots in the rank space (upper triangle). Scatter
plots on the bottom triangle are set in the physical space.

The copulogram in Fig. 3.1, shows the dependence structure underlying the environmental input data stud-
ied. In general, building an probabilistic model to accurately represent the environmental random vector X =
(U, o0, 0wina, Hs, Tp, Owave) " € RO can be challenging. Various approaches were proposed for this purpose, either
using conditional distributions (e.g., Bitner-Gregersen, 2015; Vanem et al., 2024), or vine copulas (e.g., Vanem,
2016; Montes-lturrizaga and Heredia-Zavoni, 2016; Lin and Dong, 2019). Nonparametric methods like KDE were
also applied in this context (e.g., Han et al., 2018). Nonparametric techniques generally struggle to model the
distributions’ tails, even if the tails are essential to qualify structures for ultimate events. However, they are highly
flexible and often easier to implement than parametric methods. A hybrid inference strategy was also proposed
in Fekhari (2024, Chapter 3), composing some well-known parametric models for the marginals (e.g., Weibull
distribution for the wind speed), with a flexible dependence modeling by the empirical Bernstein copula (Sancetta
and Satchell, 2004).

3.3 Definition of the system random inputs

As mentioned earlier, multiple parameters in a wind turbine system can be considered as uncertain. Our study
focuses on the effects of uncertainties on fatigue damage over the structure. Therefore, the literature review of
the sensitivity analysis on offshore wind turbine fatigue helped us narrow down a few system variables. Petrovska
(2022) explored the sensitivity analysis of many variables on the fatigue of a wind turbine in Teesside. Even if the
use of the Morris method is questionable (see e.g., Da Veiga et al., 2021), the results allowed us to screen out
some variables. For example, the uncertainties related to the corrosion, the wind shear exponent, or the nacelle

13
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mass showed a limited impact on the fatigue. By crossing the conclusions of various research with the expert
knowledge among partners from the HIPERWIND European project, the system variables considered uncertain in
the following are described in Table 3.2 and gathered by the random vector Z = (Ksoil,@yaw,e)T € R3. Each
of them is assumed independent, with a marginal probabilistic model arising from the literature (see e.g., JCSS,
2011; Drexler and Muskulus, 2021). Note that the critical damage, above which fatigue failure should occur is
also assumed random with the random variable D, € R (also called “Miner's damage sum" at failure in JCSS,
2011).

Name Notation Marginal model Remark

Soil stiffness coeff. Kyl N(p =1, 0%=0.2? Truncation: [0.5, 2]
Yaw misalignment Oy, N(u=0, 0% =52 Truncation: [—10, 10]
S-N curve coeff. € LN (pe =1, 02 =0.2?) -

Critical damage D, LN (pp,, =1,0p,=03%) =

Table 3.2: Marginal distributions of the system random variables.

3.4 Probabilistic fatigue assessment

The definition of a fatigue endurance model has a main impact on fatigue damage assessment. However, the S-N
curves usually describing the endurance of a material are built on repeated laboratory experiments. Even if the
need for random S-N curves has long been expressed in the field of fatigue experiments (Lieudarde, 1982), their
probabilistic description was better formalized in (Guédé et al., 2007; Sudret, 2013).

The models proposed in Guédé et al. (2007) are based on the experimental procedure used to build the S-N
curves. For identical steel specimens, a cyclic loading with fixed amplitude is repeated until fatigue crack initiation.
Because of variations in the material's microstructure, the fatigue endurance for the same cyclic solicitation is
random. This variation is commonly assumed to follow a lognormal distribution in the literature. A probabilistic
model of the S-N curve naturally comes:

In(N.(s,€)) =In(a) — mln(s) + In(e) (3.1a)
= Ng(s,e)=as "¢, (3.1b)

where ¢ ~ LN (pe = 1, 02 = 0.2%) is assumed when no measurement is available (according to DNV-RP-C203,
2016, Appendix F.5). This uncertainty can be injected into the Miner-Palmgren rule defined in Eq. (2.3), leading
to:
k k

1 1 1 1
de(e) = —_—— = _— = _, 3.2
+(e) z:: N (s, e) Z a (s(j))_m € Z (s(j))_m (32)

1 j=1 € j=14a

J
which can be assessed as a pure post-processing of fatigue damage results computed with a single deterministic
S-N curve.

In wind energy standards, S-N curves for design are actually a conservative envelope of the measured fatigue
endurance. DNV-RP-C203 (2016, Appendix F.7) describes how to define a design S-N curve from fatigue mea-
sures. Assuming that the fatigue endurance follows a Gaussian distribution on a logarithmic scale, such that
In(e) ~ N (n(e), afn(g)), the design S-N curve NJ*i8%(s) is the curve at two standard deviations o1,(.) below
the median curve. Using the design S-N curve given in DNV-RP-C203 (2016, Sec. 2.4.6) and the normality
assumption, one can reconstruct the median S-N curve by taking:

q50%[In(Ne(s,€))] = In (NSESign(s)) +201m(s).- (3.3)

Fig. 3.2 illustrates the design curve defined by DNV for tubular joints DNV-RP-C203 (2016, Sec. 2.4.6) and the
reconstructed probabilistic model according to the previous assumptions.

3.5 Synthesis

This section defines two sources of uncertainties considered in this problem: the environmental variables and
the system ones, following the typology introduced in the PhD thesis of Fekhari (2024). Among the system
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Figure 3.2: Illustration of a probabilistic S-N curve according to the model defined in Guédé et al. (2007).

uncertainties, a focus is done on the construction of a probabilistic S-N curve according to the standards. In the
following, the two sources of uncertainties will differently impact the output quantities of interest studied.

4 A first uncertainty propagation approach for cumulated fatigue dam-
age estimation

4.1 Introduction

In the wind energy community, the definition of fatigue loads (or load cases) considering metocean uncertainties
is an important topic. Following the uncertainty quantification framework (see Fig. 1.1), it is the propagation
of the metocean uncertainties introduced in Section 3 through the simulation model described in Section 2. To
validate the structural integrity of an OWT design regarding the fatigue limit states, international standards such
as |[EC-61400-1 (2019) and DNV-RP-C203 (2016) recommend to evaluate the OWT simulation models over a
representative set of metocean configurations. In this case, the quantity of interest studied is the lifetime damage
at some specific hot spots of the structure. In fact, one can demonstrate that assessing the cumulative damage
over the lifetime is equivalent to estimating the mean of a cumulative damage over 10 minute w.r.t. the metocean
uncertainties. However, international standards suggest using regular grid to explore the domain induced by the
environmental variables, which requires over 2 x 10° simulations of the costly OWT simulation model (see Graf
et al., 2016). The goal of this work is to consider the uncertainties related to site-specific environmental conditions
(with the random vector X € Dx C RY), and efficiently propagate them through an OWT simulation model
(denoted by d. : Dx — R) to estimate a quantity of interest )(Y") = ¥(d.(X)) on the cumulated fatigue damage.

Regarding the probabilistic modeling of the metocean conditions, two cases may occur: either measured data
are directly available (i.e., the “given-data” context) or a theoretical parametric form for the joint input probability
distribution can be postulated. Such existing parametric joint distributions often rely on prior data fitting combined
with expert knowledge. When a considerable amount of environmental data is available, nonparametric approaches
such as the empirical Bernstein copula have been studied in Fekhari (2024, Chapter 3) to capture complex
dependence structures. Alternatively, an idea is to directly use the data as an empirical representation of input
uncertainties in order to avoid an additional inference error.

In the UQ literature for wind energy, authors have proposed numerous propagation approaches to estimate the
quantity of interest. Depending on the nature of ¥(Y"), one often distinguishes between two types of uncertainty
propagation: a central tendency estimation (e.g., focusing on the output mean value or the variance) and a
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tail estimation (e.g., focusing on a high-order quantile or a failure probability). When uncertainty propagation
aims at central tendency estimation, the usual methods can be split into two groups. First, those relying on
sampling, i.e., mainly Monte Carlo sampling (Graf et al., 2016), quasi-Monte Carlo sampling (Miller and Cheng,
2018), geometrical subsampling (Kanner et al., 2018), or deterministic quadrature rules (Van den Bos, 2020).
All these methods estimate the quantity directly on the numerical simulator’s outputs. Second, those that rely
on the use of surrogate models to emulate the costly numerical model by a statistical model. Among a large
panel of surrogates, one can mention, regarding wind energy applications, the use of polynomial chaos expansions
(Dimitrov et al., 2018; Murcia et al., 2018), GP regression (Huchet, 2018; Teixeira et al., 2019a; Slot et al., 2020;
Wilkie and Galasso, 2021), or artificial neural networks (Bai et al., 2023). When uncertainty propagation aims at
studying the tail of the output distribution such as in risk or reliability assessment, one usually desires to estimate
a quantile or a failure probability. In the wind energy literature, failure probability estimation has been studied,
e.g., in time-independent reliability assessment (Zwick and Muskulus, 2015; Slot et al., 2020; Wilkie and Galasso,
2021) or regarding time-dependent problems (Abdallah et al., 2019; Lataniotis, 2019).

In uncertainty quantification, modelers and analysts often need to determine whether inputs are influential
or not in order to prioritize their effort (in terms of experimental data collecting, simulation budget, or expert
elicitation). Sometimes, they want to get a better understanding of the OWT numerical models’ behavior or
to enhance the input uncertainty modeling. All these questions are intimately related to the topic of sensitivity
analysis (Saltelli et al., 2008; Da Veiga et al., 2021). In the wind energy literature, one can mention, among
others, some works related to Spearman’s rank correlation analysis and the use of the Morris method in Velarde
et al. (2019) and Petrovska (2022). Going to variance-based analysis, the direct calculation of Sobol’ indices
after fitting a polynomial chaos surrogate model has been applied in many works (e.g., in Murcia et al., 2018)
while the use of distributional indices (e.g., based on the Kullback-Leibler divergence) has been investigated by
Teixeira et al. (2019b).

The present section is based on Fekhari (2024, Chapter 4) to focus on the problem of uncertainty propagation,
and more specifically, on the mean fatigue damage estimation (i.e., ¥(Y") = E[d.(X)]). Such a problem is usually
encountered, by engineers, during the design phase. Most of the time, current standards as well as common
engineering practices make them use regular grids, as recalled in Graf et al., 2016. Altogether, one can describe
three alternative strategies: (i) direct sampling on the numerical model (e.g., using Monte Carlo), (ii) sampling on
a static surrogate model (e.g., using GP regression), or (iii) using an “active learning” strategy (i.e., progressively
adding evaluations of the numerical model to enhance the surrogate model fitting process). In practice, fitting a
surrogate model in the context of OWT fatigue damage can be challenging due to the nonlinearity of the code.
Moreover, the surrogate model validation procedure complexifies the process. Finally, active learning strategies
restrict the potential number of parallel simulations, which limits the use of HPC facilities. Thus, the proposed
work consists of evaluating the advantages and limits of a kernel-based method, called “kernel herding” (Chen
et al., 2010), as a tool for given-data, fast, and fully-distributable uncertainty propagation in OWT simulators.
Additionally, this sampling method is highly flexible, allowing one to complete an existing design of experiments.
Such a property can be crucial in practice when the analyst is asked to include some specific points to the design
(e.g., characteristic points describing the system’s behavior required by experts or by standards, as explained in
Huchet, 2018).

4.1.1 Definition of the quantity of interest

For a realization x € Dx of environmental conditions, at a structural node i, an azimuth angle 0; k € N
stress cycles of respective amplitude {sgja)
gio(x): Dx — Ry by:

(x)}é?:1 are identified. Then, Miner's rule defines the damage function
u 1
1,0 —
s’ (x) = E B . (4.1)

As defined by the DNV standards for OWT fatigue design (DNV-RP-C203, 2016), the quantity of interest in
the present section is the “mean damage” DY (also called “mean cumulative damage”), computed at a node 1,
for an azimuth angle 6:

D = E[di* (X)) = /D 4 (x) f () dx. (4.2)

To get a preview of the distribution of this output random variable d%:?(X), a histogram of a large Monte Carlo
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simulation (Nef = 2000) is represented in Fig. 4.1 (with a log scale). In this case, the log-damage histogram
presents a little asymmetry but it is frequently modeled by a normal distribution (see e.g., Teixeira et al., 2019b).

0.15+

I Monte Carlo (N = 2000)
—— Arithmetic mean
—— Normal fitted

0.10+

Density

0.05 1

0.00-

Global damage (log-scale)

Figure 4.1: Histogram of the log-damage, at mudline, azimuth 45 deg. (Monte Carlo reference sample).

The present section will first introduce various kernel-based methods for central tendency estimation. Then,
numerical experiments obtained on both analytical and industrial cases will be analyzed. Finally, it will present
some discussions and draw some conclusions.

4.2 A first integration approach based on kernels

Various methods aim at approximating the integral of a function against a probability measure. In the case of
OWT mean damage estimation, these methods can be used for defining efficient design load cases. This problem
is equivalent to the central tendency estimation of Y = d.(X), the image of the environmental random variable
X by the damage function d.(-). Considering a measurable space Dx C R% d € N*, associated with a known
probability measure m, this section studies the approximation of integrals of the form I.(g) = fDx g(x)dm(x),
for a measurable function g : Dx — R.

4.2.1 Quadrature rules and quasi-Monte Carlo methods

Numerical integration authors may call this generic problem probabilistic integration (Briol et al., 2019). In

practice, this quantity is estimated on an n-sized set of damage realizations y,, = {g (x)) ,..., g (x™)} of an
input sample X, = {x(l), .. .,x(”)}. A weighted arithmetic mean of the realizations {g (x(l)) yeees g (x("))} is
called a quadrature rule with a set of unconstrained weights w,, = {ws,...,w,} € R", such that:

o) = [ txano = iwig (x). (43)

The numerical experiment framework often implies that the function g is costly to evaluate, making the realization
number limited. For a given sample size n, the goal is to find a set of tuples of nodes and weights {x(i),wi}?zl
(i-e., a quadrature rule), giving the best approximation of the studied quantity. In the literature, a large panel
of numerical integration methods has been proposed to tackle this problem. For example, Van den Bos (2020)
recently developed a quadrature rule based on arbitrary sample sets which was applied to a similar industrial OWT

use case.

Alternatively, sampling methods rely on generating a set of points X,, drawn from the input distribution
to compute the arithmetic mean of their realizations (i.e., uniform weights {w; = 2} ). Among them, low-
discrepancy sequences, also called “quasi-Monte Carlo” sampling (e.g., Sobol’, Halton, Faure sequences Leobacher
and Pillichshammer, 2014) are known to improve the standard Monte Carlo convergence rate and will be used as
a deterministic reference method in the following numerical experiments.

4.2.2 Kernel discrepancy

Quasi-Monte Carlo sampling methods widely rely on a uniformity metric, called discrepancy. This section first
presents the link between discrepancy and numerical integration. Then it introduces a kernel-based discrepancy,
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generalizing the concept to non-uniform measures. This tool is eventually used to build a sequential quadrature
rule by subsampling from a finite dataset.

Quantization of probability measures and quadrature When dealing with probabilistic integration such
as Eq. (4.3), a quadrature rule is a finite representation of a continuous measure m by a discrete measure
Co = Sor, wid(x®) (weighted sum of Dirac distributions at the design points X,,). In the literature, this
procedure is also called quantization of a continuous measure 7. Overall, numerical integration is a particular
case of probabilistic integration against a uniform input measure. For uniform measures, the Koksma-Hlawka
inequality (Morokoff and Caflisch, 1995) provides an upper bound on the absolute error of a quadrature rule:

1 — .
dx — = (@)
/[0’1]p9(><) X n;:lg(x )

9%9 (Xu, 1)‘ dx, quantifies the complexity of the inte-

..... Oxy
grand, while D*(X,,) evaluates the discrepancy to uniformity of the design X,,. Therefore, the Koksma-Hlawka
inequality shows that the quadrature rule’s accuracy relies on the good quantization of © by X,,. For a uniform
measure 7, the star discrepancy D} (X,,) is a metric assessing how far from uniformity a sample X,, is. When
generalizing to a non-uniform measure, a good quantization of 7 should also lead to a good approximation of the
quantity.

< V(9) Dy (Xn). (4.4)

n

Reproducing kernel Hilbert space and kernel mean embedding To generalize the Koksma-Hlawka inequality
to any probability measure, let us assume that the integrand g lives in a specific function space H (k). H(k) is a
reproducing kernel Hilbert space (RKHS), which is an inner product space of functions g : Dx — R. Considering
a symmetric and positive definite function k£ : Dx x Dx — R, later called a “reproducing kernel” or simply a
“kernel”, an RKHS verifies the following axioms:

= The “feature map” ¢ : Dx — H(k); ¢(x) = k(-,x) belongs to the RKHS: k(-,x) € H(k),Vx € Dx;
= The “reproducing property”: (g, k(-, X))y = 9(x), Vx € Dx,Vg € H(k).

Note that it can be shown that every positive semi-definite kernel defines a unique RKHS (and vice versa) with
a feature map ¢, such that k(x,x’) = (#(x), ¢(x’)) 3 (k). This framework allows us to embed a continuous or
discrete probability measure in an RKHS, as illustrated in Fig. 4.2. For any measure 7, let us define its kernel
mean embedding (Sejdinovic et al., 2013), also called “potential” P,(x) in Pronzato and Zhigljavsky (2020),
associated with the kernel £ as:

Pr(x) := k(x,x")dmr(x"). (4.5)

Figure 4.2: Kernel mean embedding of a continuous and discrete probability distribution

Respectively, the potential P, (x) of a discrete distribution ¢, = "1 w;d(x®),w; € R, associated with
the kernel k can be written as:

P, (x) = /D k(x,x’)d(n(x/):Zwik(x,x(i)). (4.6)

The potential P;(x) of the targeted measure 7 will be referred to as “target potential” and the potential P, (x)
associated with the discrete distribution (,, called “current potential” when its support is the current design X,,.
When P, (x) is close to Pr(x), it can be interpreted as (,, being an adequate quantization or representation of
7 (which leads to a good estimation of a quantity such as I;(g) from Eq. (4.3)). Potentials can be computed in
closed forms for specific pairs of distribution and associated kernel. Summary tables of some of these cases are
detailed in Briol (2019) (section 3.4), Pronzato and Zhigljavsky (2020) (section 4), and extended in Fekhari et al.
(2023). However, in most cases, the target potentials must be estimated on a large and representative sample,
typically a large quasi-Monte Carlo sample of .
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The energy of a measure 7 is defined as the integral of the potential P, against the measure m, which leads
to the following scalar quantity:

eni= [  Prloin(o = [, o) amlante. (4.7)

Finally, using the reproducing property and writing the Cauchy-Schwarz inequality on the absolute quadrature
error leads to the following inequality, similar to the Koksma-Hlawka inequality Eq. (4.4) (see Briol et al. (2019)):

;wig(xm)—/DX g(x)dn(x)| = ’ g, P, (x )>H(k)_<g7pﬁ(x)>ﬂ(k)‘ (4.82)
= |0, (P (0) = Pr)g| (4.8b)
< ||9||H(k)||P( x) = Fe, ()l - (4.8¢)

Maximum mean discrepancy A metric of discrepancy and quadrature error is offered by the maximum mean
discrepancy (MMD). This distance between two probability distributions 7 and ( is given by the worst-case error
for any function within a unit ball of the Hilbert space H(k), associated with the kernel k:

/D 960G - /D 90000

According to the inequality in Eq. (4.8¢c), MMDy(7,() = || Pr — P<|\H(k), meaning that the MMD fully relies
on the difference of potentials. Moreover, Sriperumbudur et al. (2010) defines a kernel as “characteristic kernel”
when the following equivalence is true: MMDy(7,{) = 0 < m = (. This property makes the MMD a metric
on Dx. The diagram in Fig. 4.3 illustrates the popularity of this metric, which relies on the so-called “kernel-
trick”, allowing to implicitly compute dot-products in the RKHS between two objects without computing their
embedding. The squared MMD has been used for other purposes than numerical integration: e.g., statistical
testing (Gretton et al., 2006), global sensitivity analysis (Da Veiga, 2015), or clustering distributions (Lovera
et al., 2023). It can be developed as follows:

MMDyg(m,¢) ;==  sup

lgll#xy <1

(4.9)

MMD?(, ¢) = || Pr(x) = Pc(x) 15, (4.10a)
= ((Pr(x) = Pc(x)), (Pr(x) = Pc(%))) g (4.10b)
Py, Pa ) gy — 2 (P 61y P ) g+ (P(), P >>H<k (4100)

//D2 x,x') dm(x)dm(x —2// (x,x') dm(x)d¢(x // (x,x") d¢(x)d¢(x").
(4.10d)

Taking a discrete distribution with uniform weights ¢, = - >7" | §(x), the squared MMD reduces to:

MMDy (7, ()2 = e — fZP (x@) Z k (x@),x(ﬂ‘)). (4.11)

i,j=1

4.2.3 Kernel herding sampling

The MMD is used below to build a quadrature rule by sampling from a known measure. In other words, to
quantize a known target measure 7 by a design sample X,,. For practical reasons, the design construction is done
sequentially. Moreover, since each realization is supposed to be obtained at the same unitary cost, the quadrature
weights are first fixed as uniform during the construction of the design X,,.

Kernel herding (KH), proposed by Chen et al. (2010), is a sampling method that offers a quantization of
the measure m by minimizing a squared MMD when adding points iteratively. With a current design X,, and its
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Figure 4.3: Kernel mean embedding of continuous and discrete distributions.

corresponding discrete distribution with uniform weights ¢,, = %Z;;l 1 (x(i)), a KH iteration consists in solving
an optimization of the following criterion, selecting the point x("*1) € Dx as follows:

( +Z(5( W)))} (4.12)

In the literature, two formulations of this optimization problem can be found. The first one uses the Frank-
Wolfe algorithm (or “conditional gradient algorithm”) to compute a linearization of the problem under the con-
vexity hypothesis (see Lacoste-Julien et al., 2015 and Briol et al., 2015 for more details). The second one is a
straightforward greedy optimization. Due to the combinatorial complexity, the greedy formulation is tractable for
sequential construction only. Let us develop the MMD estimator introduced in Eq. (4.11):

x("Y ¢ arg min {MMD2 (

x€Dx

n n+1 n+1
4 ) ,
2 (&) — (z)) ( )
MMD <7r, 1<5(x)+;5<x ))) Ex n+1;P7r(x +122k
(4.13a)
2 n
. (@)
= — (Pﬂ(x) n ;Pﬂ (x )) (4.13b)
1 n ) ) n )
+— k (x(’),x(])) +2) k (X(Z),x) —k(x,x) | ,
e (2 2
(4.13¢)
where the “potential”, also called kernel mean embedding, of a measure 7 is given by Py ( fD x')dr(x’)
, and the energy of the measure 7 is defined as e, = fsz dr(x)dm(x). In the prevnously developed

expression, only a few terms actually depend on the next optlmal pomt x(" 1) since the target energy, denoted
by e, and k(x,x) = o2 are constant assuming a stationary kernel. Therefore, the greedy minimization of the
MMD can be equivalently written as:

T En: k (x(i), x) - Pﬂ(x)} = arg min {n:L—lPC" (x) — PW(X)} . (4.14)
i=1

xEDx

x("*1) € argmin
x€EDx n

Remark 1 For the sequential and uniformly weighted case, the formulation in Eq. (4.14) is almost similar to the
Frank-Wolfe formulation. Based on a few numerical experiments, these two versions generate very close designs,
especially as n becomes large. Pronzato and Rendas (2023) express the Frank-Wolfe formulation in the sequential
and uniformly weighted case as follows:

x("*) ¢ argmin { P, (x) — Pr(x)}. (4.15)
x€Dx

Remark 2 In practice, the optimization problem is solved by a brute-force approach on a fairly dense finite subset
S C Dx of candidate points with size N > n that emulates the target d/str/but/on also called the “candidate
et”. This sample is also used to estimate the target potential Pr(x) ~ + Zl Lk (x)x).
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Figure 4.4: Greedy KH algorithm.

Energy-distance ke(x,x') =3 (x| + [|x]| = [Ix — ')

Squared exponential ko(x,x") =TT5 ke, (z; — o) ko(x — ') = exp (f (m;;z/f)

Matérn (v = 5/2) kn(x,x") =10, ks o0, (25 — 2) ks o0(x —2') = (1 + §|x — 2|
+305( x’)Q) exp (—%u - x’\)

Table 4.1: Kernels considered in the following numerical experiments.

The diagram illustrated in Fig. 4.4 summarizes the main steps of a KH sampling algorithm. One can notice that
the initialization can either be done using a median point (maximizing the target potential) or from any existing
design of experiments. This second configuration is practical when the analyst must include some characteristic
points in the design (e.g., points with a physical interpretation).

As explained previously, choosing the kernel defines the function space on which the worst-case function is
found (see Eq. (4.9)). Therefore, this sampling method is sensitive to the kernel's choice. A kernel is defined,
both by the choice of its parametric family (e.g., Matérn, squared exponential) and the choice of its tuning.
The so-called “support points” method developed by Mak and Joseph (2018) is a special case of KH that uses
the characteristic and parameter-free “energy-distance” kernel (introduced by Székely and Rizzo, 2013). In the
following numerical experiments, the energy-distance kernel will be compared with an isotropic tensor product of
a Matérn kernel (with regularity parameter v = 5/2 and correlation lengths 6;), or a squared exponential kernel
(with correlation lengths 6;) defined in Table 4.1. Since the Matérn and squared exponential kernels are widely
used for GP regression (Rasmussen and Williams, 2006), they were naturally picked to challenge the energy-
distance kernel. The correlation lengths for the squared exponential and Matérn kernels are set using the heuristic
given in Fekhari et al. (2023), 6; = n~Y? i€ {1,...,d}.

Fig. 4.5 represents the covariance structure of the three kernels. One can notice that the squared exponential
and Matérn v = 5/2 kernels are closer to one another than they are to the energy-distance. In fact, as v tends to
infinity, the Matérn kernel tends toward the squared exponential kernel (which has infinitely differentiable sample
paths, see Rasmussen and Williams, 2006). For these two stationary kernels, the correlation length controls how
fast the correlation between two points decreases as their distance from one another increases.

Meanwhile, the energy-distance is not stationary (but still positive and semi-definite). Therefore, its value does
not only depend on the distance between two points but also on the norm of each of the points. Interestingly, the
energy-distance kernel is almost similar to the kernel used by Hickernell (1998) to define a widely-used space-filling
metric called the centered L2-discrepancy. A presentation of these kernel-based discrepancies from the design of
experiment point of view is also provided in Chapter Two from Fang et al. (2018).

To illustrate the KH sampling of a complex distribution, Fig. 4.6 shows three nested samples (orange crosses
for various sizes n € {10,20,40}) of a mixture of Gaussian distributions with complex nonlinear dependencies
(with density represented by the black isoprobability contours). In this example, the method seems to build a
parsimonious design between each mode of the distribution (by subsampling directly without any transformation).
The candidate set (in light gray) was generated by a large quasi-Monte sample of the underlying Gaussian mixture.
In this two-dimensional case, this candidate set is sufficient to estimate the target potential P,. However, the
main bottleneck of KH is the estimation of the potentials, which becomes costly in high dimensions.

Other approaches take advantage of the progressive knowledge acquired sequentially from the outputs to select
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Figure 4.5: Kernel illustrations (left to right: energy-distance, squared exponential, and Matérn 5/2).
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Figure 4.6: Sequential KH for increasing design sizes (n € {10,20,40}) built on a candidate set of N = 8196
points drawn from a complex Gaussian mixture 7.

the following points in the design. These methods are sometimes called “active learning” or “adaptive strategies”
(Fuhg. et al., 2021). Many of them rely on a sequentially updated Gaussian process (or Kriging) metamodel. To
solve a probabilistic integration problem, the concept of Bayesian quadrature is introduced in the following.

4.2.4 Bayesian quadrature.

Gaussian processes for Bayesian quadrature Kernel methods and GP present a lot of connections and equiv-
alences, thoroughly reviewed by Kanagawa et al. (2018). In numerical integration, GP have been used to build
quadrature rules in the seminal paper of O'Hagan (1991), introducing the concept of Bayesian quadrature (BQ).
Let us recall the probabilistic integration problem I.(g) = [, g(x)dm(x) (stated in Eq. (4.3)). From a general
point of view, this quantity could be generalized by composing g with another function ¢ (e.g., other moments,
quantiles, exceedance probabilities). The quantity of interest then becomes, I.(1(g)), for example when ¢ is a
monomial, it gives a moment of the output distribution.

Let us assume, adopting a Bayesian point of view, that GG is a stochastic process describing the uncertainty af-
fecting the knowledge about the true function g. Let G be a Gaussian process (GP) prior with a zero trend (denoted
by 0) to ease the calculation, and a stationary covariance kernel (denoted by k(:,-)). The conditional posterior

Gn = (Glyn) ~ GP(n,,s2) has been conditioned on the function observations y,, = [g (xV),...,g (x("))]T

computed from the input design X,, and is fully defined by the well-known “Kriging equations” (see e.g., Ras-
mussen and Williams, 2006):

n = kT K;! n
su(x) = kn(x,%) — k; (x)K;, ki (x)
where k,,(x) is the column vector of the covariance kernel evaluations [k, (x,x™M), ..., k,(x,x™)] and K,, is

the (n x n) variance-covariance matrix such that the (i, j)-element is {K,}, ; = kn(x(",x(9)),

In BQ, the main object is the random variable I.(G,,). Following the denomination of Briol et al. (2019),
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its distribution on R is the pushforward of G,, through the integration operator I (-), sometimes called posterior
distribution:

L(Gh) = /D (CE)lyn)dnx) = [ Gnx)dr(x). (4.17)

Dx

Fig. 4.7 provides a one-dimensional illustration of the BQ of an unknown function (dashed black curve) against
a given input measure 7 (with corresponding gray distribution at the bottom). For an arbitrary design, one can fit
a Gaussian process model, interpolating the function observations (black crosses). Then, multiple trajectories of
this conditioned Gaussian process G, are drawn (orange curves) whilst its mean function, also called “predictor”,
is represented by the red curve. Therefore, the input measure 7 is propagated through the conditioned Gaussian
process to obtain the random variable I;(G,,), with distribution represented on the right plot (brown curve).
Again on the right plot, one can remark how the mean of this posterior distribution (brown line) is closer to the
reference output expected value (dashed black line) than the arithmetic mean of the observations (black line).
This plot was inspired by the paper of Huszar and Duvenaud (2012).
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Figure 4.7: Bayesian quadrature on a one-dimensional case.

Optimal weights computed by Bayesian quadrature Taking the random process G, as Gaussian conveniently
implies that its posterior distribution a,(G,,) is also Gaussian. This comes from the linearity of the infinite sum
of realizations of a Gaussian process. The posterior distribution is described in a closed form through its mean
and variance by applying Fubini’s theorem (see the supplementary materials from Briol et al., 2019 for the proof
regarding the variance):

PO =BGyl = [ maGdntx) = [ [ K Goant0| Kty = PRy (@s)
Dx Dx
(UEQ) = Var (I // dr(x)dr(x') = ex — Pr(X) K, ' Pr(X,) T, (4.19)
where P(X,,) is the row vector of potentials [ [ k,(x,x1)dr(x), ..., [ kn(x,x(™)d7(x)], and e, is given in

Eq. (4.7). As in the one-dimensional example presented in Flg 4 7 the expected value of I;(G,) expressed
in Eq. (4.18) is a direct estimator of the quantity of interest expressed in Eq. (4.3). The so-called “Bayesian
quadrature estimator” appears to be a simple linear combination of the observations by taking the row vector of
“optimal weights" as:

wpq = Pr(X,)K,,! (4.20)

For any given sample, an optimal set of weights can be computed, leading to the mean of the posterior distribution.
Remark here that this enhancement depends on the evaluation of the inverse variance-covariance matrix K, !,
which can present numerical difficulties, either when design points are too close, leading to poor conditioning of
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the matrix. Moreover, a prediction interval on the BQ estimator can be computed since the posterior distribution
is Gaussian, with a variance expressed in closed-form in Eq. (4.19). The expressions in Eq. (4.18) and Eq. (4.19)
were extended to GPs in the case of constant and linear trends in Pronzato and Zhigljavsky (2020). In the
following numerical experiments, the expression with a hypothesis of constant trend [, is used, which leads to:

E [Iﬂ'(Gn)] = 6n + Pﬂ'(Xn)Kgl (Yn - ﬁnln) . (421)

Then, an a posteriori 95% prediction interval around the mean Bayesian estimator is directly given by:

7R € [ghQ — 2009 7BQ 4 25897 (4.22)

Variance-based Bayesian quadrature rule. The link between the posterior variance and the squared MMD has
been first made by (Huszér and Duvenaud, 2012, Proposition 1): the expected variance in the BQ Var (I.(G,,))

is the MMD between the target distribution 7 and ¢, = >i-, wggé (x("). The proof is reproduced below (as
well as in Proposition 6.1 from Kanagawa et al., 2018):

Var (I;(Gyn)) = E [(Iﬁ(Gn) — I, (Gn))Q] (4.23a)
=E [(<Gn, Pr)yyey = (Gn, PCH>H(k))2} (4.23b)
—E [<Gn, Py — PC,”>,2H(,€)} (4.23¢)
= | Pr = Pe, 3sx) (4.23d)
= MMD?(7, (). (4.23¢)

Note that the transition from Eq. (4.23c) to Eq. (4.23d) relies on the property stating that if G is a standard
Gaussian process then Vg € H (k) : (G, g) 1) ~ N (0, Hg||§_[(k)). The method that sequentially builds a quadrature
rule by minimizing this variance is called by the authors “sequential Bayesian quadrature”. According to the
previous proof, this criterion can be seen as an optimally-weighted version of the KH criterion, as stated in the
title of the paper from Huszér and Duvenaud (2012). Later, Briol et al. (2015) proved the weak convergence of
I.(G),) towards the target integral. Closer to wind turbine applications, Huchet (2018) and Huchet et al. (2019)
introduced the “Adaptive Kriging Damage Assessment” method: a Kriging-based method for mean damage
estimation that is very close to sequential Bayesian quadrature. However, this type of method inherits the limits
from both KH and BQ since it searches for optimal design points among a candidate set and computes an inverse
variance-covariance matrix. These numerical operations both scale hardly in high dimension.

Remark 3 Every quadrature method introduced in this section has been built without any observation of the
possibly costly function g. Therefore, they cannot be categorized as active learning approaches. Contrarily,
Kanagawa and Hennig (2019) presents a set of methods for BQ with transformations (i.e., adding a positivity
constraint on the function g), which are truly active learning methods.

4.3 Numerical experiments

This section presents numerical results computed on two different analytical test cases, respectively in dimension
2 (test case #1) and dimension 10 (test case #2), with easy-to-evaluate functions g(-) and associated input
distributions 7. Therefore, reference values can easily be computed with great precision. For each test case, a
large reference Monte Carlo sample (N,of = 108) is taken. This first benchmark compares the mean estimation
of test cases given by a quasi-Monte Carlo technique (abbreviated by QMC in the next figures) which consists
herein using a Sobol’ sequence, and KH with the three kernels defined in Table 4.1. Notice that the quasi-
Monte Carlo designs are first generated on the unit hypercube and then, transformed using the generalized Nataf
transformation to follow the target distribution (Lebrun and Dutfoy, 2009). Additionally, the performances of KH
for both uniform and optimally-weighted Eq. (4.21) estimators are compared.

All the following results and methods (i.e., the KH sampling and BQ methods) have been implemented in a new
open source Python package named otkerneldesign’, which relies on OpenTURNS (Baudin et al., 2017). Finally,
note that the numerical experiments for the test cases are available in the Git repository named ctbenchmark®.

"https://efekhari27.github.io/otkerneldesign /master/index.html
8https://github.com /efekhari27 /ctbenchmark
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Table 4.2: Analytical test cases
Test case #1 d =2 91(x) = x1 + 22 Gaussian mixture from Fig. 4.6
Test case #2 d=10 go(x) =[[2, %, {a; =2}, Gaussian N(0.5,1;0)

4.3.1 Benchmark results on analytical test cases

The test cases summarized in Table 4.2 were chosen to cover a panel of complex probabilistic integration problems,
completing the ones from Fekhari et al. (2022). To assess the complexity of numerical integration problems, Owen
(2003) introduced the concept of the “effective dimension” of an integrand function (number of the variables that
actually impact the integral). The author showed that functions built on sums yield a low effective dimension
(unlike functions built on products). In the same vein, Kucherenko et al. (2011) build three classes of integrand
sorted by difficulty depending on their effective dimension:

= class A problems: problem with a few dominant variables;
= class B problems: problem without unimportant variables, and important low-order interaction terms;
= class C problems: problems without unimportant variables, and important high-order interaction terms.

In the case of the two-dimensional Gaussian mixture problem (test case #1), the complexity is carried by the
mixture of Gaussian distributions with highly nonlinear dependencies. Then, the 10-dimensional “GSobol function”
(test case #2) with a set of coefficient {a; = 2}19, has an effective dimension equal to 10 and belongs to the
hardest class C from Kucherenko et al. (2011). Probabilistic integration results are presented in Fig. 4.8 (test case
#1) and Fig. 4.9 (test case #2). Kernel herding samples based on the squared exponential kernel are in green,
those using the Matérn kernel are in orange, those using the energy-distance kernel are in red, while quasi-Monte
Carlo samples built from Sobol’ sequences are in gray. Convergences of the arithmetic means are plotted on the
left and MMDs on the right. The respective BQ estimators of the means are plotted in dashed lines.

Remark 4 Different kernels are used in these numerical experiments. First, the generation kernel is used by the
KH algorithm to generate designs (with the heuristic tuning defined in Section 4.2.3). Second, the BQ kernel
allows computation of the optimal weights (arbitrarily set up as a Matérn 5/2 with the heuristic tuning). Third,
the evaluation kernel must be common to allow a fair comparison of the computed MMD results (same as the
BQ kernel).

Regarding the results for the test case #1, the convergence plots are provided in Fig. 4.8. KH consistently
converges faster than quasi-Monte Carlo in this case, especially for small sizes in terms of MMD. BQ weights
tend to reduce the fluctuations in the mean convergence, which ensures better performance for any size. Overall,
applying the weights enhances the convergence rate.

Then, the convergence plots corresponding to the test case #2 are provided in Fig. 4.9. Although quasi-Monte
Carlo is known to suffer the “curse of dimensionality”, KH does not outperform it drastically in this example.
In fact, KH with uniform weights performs worse than quasi-Monte Carlo while optimally-weighted KH does
slightly better. Moreover, the results confirm that MMDpg < MMDyi¢ for all the proposed experiments. The
application of optimal weights to the quasi-Monte Carlo sample slightly improves the estimation in this case. Note
that the prediction interval around the BQ estimator is not plotted for the sake of readability. Finally, one can
note that the prediction interval around the BQ estimator is not plotted for the sake of readability.

In these two test cases, the MMD is shown to quantify numerical integration convergence well, which illustrates
the validity of the inequality given in Eq. (4.8c), similar to the Koksma-Hlawka inequality. Between the three
kernels employed for KH, the energy-distance kernel performs slightly better and presents the advantage of not
needing tuning.

4.3.2 Application to the Teesside wind turbine fatigue estimation

In order to summarize the mean damage estimation strategies studied in this section, the diagram represented in
Fig. 4.10 describes the different workflows computed. The simplest workflow is represented by the gray horizontal
sequence. It directly subsamples a design of experiments from a large and representative dataset (previously
referred to as candidate set). This workflow simply estimates the mean damage by computing an arithmetic
average of the outputs.
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Figure 4.8: Analytical benchmark results on the test case #1.

Alternatively, one can respectively fit a joint distribution and sample from it. Here, this distribution is only
known empirically via the candidate set. Since its dependence structure is complex (see Fig. 3.1), a parametric
method might fit the distribution poorly (and therefore lead to a poor estimation of the quantity). Then, a
nonparametric fit using the empirical Bernstein copula (introduced in Vanem et al., 2024) coupled with a KDE
on each marginal is applied to the candidate set (with the EBC parameter m = 100 > mAMISE to avoid
bias, see Lasserre, 2022, p.117). The sampling on this hybrid joint distribution is realized with a quasi-Monte
Carlo method, here a Sobol’ low-discrepancy sequence generates a uniform sample in the unit hypercube, then
transformed according to the target distribution. Remember that quasi-Monte Carlo sampling is also sensitive
to the choice of a low-discrepancy sequence, each presenting different properties (Sobol’, Halton, Faure, etc.).
Finally, the estimation by an arithmetic mean can be replaced by an optimally weighted mean. To do so, optimal
weights must be computed, using the formulas introduced in Eq. (4.20).
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Figure 4.9: Analytical benchmark results on the test case #2.

The copulogram in Fig. 4.11 illustrates the intensity of the computed damages, proportionally to the color
scale. Note that the numerical values of the damage scale are kept confidential since it models the state of an
operating asset. Before analyzing the performance of the KH on this industrial application, one can notice that
the copulogram Fig. 4.11 seems to be in line with the global sensitivity analysis presented in Murcia et al. (2018)
and Li and Zhang (2020). In particular, the fact that the scatter plot of mean wind speed vs. turbulence wind
speed is the main factor explaining the variance of the output Y = ¢(X). Judging from these references, the
numerical model does not seem to have a high effective dimension. However, the input dependence structure is
still challenging, and the damage assessment induces strong nonlinearities (see Eq. (2.2)).

The results presented are compared in the following to a reference Monte Carlo sample of size n,s = 2000,
with a confidence interval computed by bootstrap (see Fig. 4.12). This reference is represented by a horizontal
line intersecting with the most converged Monte Carlo estimation. Once again, the mean damage scale is hidden
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Figure 4.10: Mean damage estimation workflows for the industrial Teesside use case. The orange parts represent
optional alterations to the workflow: the first one is an alternative to input data subsampling where the underlying
distribution is sampled from, the second one improves mean damage calculation by using optimal weights over
the output data.

for confidentiality reasons, but all the plots are represented for the same vertical scale. However, the KH quickly
converges towards the confidence interval of the Monte Carlo obtained with the reference sample. In addition,
the BQ estimator also offers a posteriori prediction interval, which can reassure the analyst. Finally, one can see
that the BQ prediction intervals are smaller than the ones obtained by bootstrap on the reference Monte Carlo
sample.

To provide more representative results, note that a set of scale parameters is computed with a Kriging procedure
to define the kernel used to compute BQ intervals. Since other methods do not generate independent samples,
bootstrapping them is not legitimate. Contrarily to the other kernels, one can notice that the energy-distance
kernel presents a small bias with the Monte Carlo reference for most of the azimuth angles computed in this
experiment. Meanwhile, combining nonparametric fitting with quasi-Monte Carlo sampling also delivers accurate
results as long as the fitting step does not introduce a bias. In the present case, any potential bias due to poor
fitting would be the result of a poorly tuned EBC. Fortunately, Nagler et al. (2017) formulated recommendations
regarding how to tune EBCs. We follow these recommendations in the present work.

4.4 Synthesis

Wind energy assets are subject to highly uncertain environmental conditions. Uncertainty propagation through
numerical models is performed to ensure their structural integrity (and energy production). For this case, the
method recommended by the standards (regular grid sampling) is intractable for even moderate-fidelity simulators.
In practice, such an approach can lead to poor uncertainty propagation, especially when facing simulation budget
constraints.

In the present section, a real industrial wind turbine fatigue estimation use case is investigated, considering
site-specific data. As a perspective, other sites with different environmental conditions could be studied. This
use case induces two practical constraints: first, usual active learning methods are hard to set up on such a
model (mainly due to the nonlinearity of the variable of interest), and they restrict the use of high-performance
computing facilities; second, the input distribution of the environmental conditions presents a complex dependence
structure which is hard to infer with common parametric approaches.

In this work, the association of KH sampling with BQ for central tendency estimation is explored theoretically
and numerically. This method fits with the practical constraints induced by the industrial use case. To be
more specific, the KH method easily subsamples the relevant points directly from a given dataset (here, from
the measured environmental data). Moreover, the method is fully compatible with the intensive use of HPC
facilities. Moreover, the present work outlined an upper bound based on the maximum mean discrepancy (MMD)
on numerical integration absolute error. Kernel herding and BQ both aim at finding the optimal quadrature
rule minimizing the MMD, and therefore the absolute integration error. The numerical experiments confirm that
the MMD is an appropriate criterion since it leads to results being better or equivalent to quasi-Monte Carlo
sampling. Finally, the proposed numerical benchmark relies on a Python package, called otkerneldesign, which
implements the methods and allows anyone to reproduce the results.
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Figure 4.11: Copulogram of the KH design of experiments with corresponding outputs in color (log-scale) on the
Teesside case (n = 103). The color scale ranges from blue for the lowest values to red for the largest.

The limits of the proposed method are reached when the input dimension of the problem increases, requiring a
larger candidate set and therefore a larger covariance matrix. Moreover, the numerical experiments show that the
method can be sensitive to the choice of the kernel and its tuning (although good practices can still be derived).
From a methodological viewpoint, further interpretation of the impact of the different kernels could be explored.
Besides, extensions of KH sampling for quantile estimation could be investigated, in a similar fashion as the work
on randomized quasi-Monte Carlo for quantiles proposed by Kaplan et al. (2019). Kernel herding could also
be used to quantize conditional distributions, using the so-called “conditional kernel mean embedding” concept
reviewed by Klebanov et al. (2020). Finally, regarding the industrial use case, the next step will be to perform a
reliability analysis by considering another group of random variables (related to the OWT). Further perspectives
could be to explore the possibilities offered by reliability-oriented sensitivity analysis in the context of kernel-based
indices, as studied in Marrel and Chabridon (2021).
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Figure 4.12: Mean estimation convergence (at the mudline, azimuth § = 45 deg.) on the Teesside case. Monte
Carlo confidence intervals are all computed by bootstrap.

30



L’A SECOND INTEGRATION APPROACH BASED ON SPARSE POLYNOMIAL CHAOS EXPANSIONS

5 A second integration approach based on sparse polynomial chaos
expansions

As an alternative estimation method for the integral in Eq. (4.2), we explore here a global approach based on the
properties of spectral expansions in general, and data-driven polynomial chaos expansions (Xiu and Karniadakis,
2002) in particular.

We follow the formalism and overall computational framework from Torre et al. (2019a,b), adopting a com-
bination of non-parametric marginals & vine-copula inference, and sparse polynomial chaos expansions.

5.1 Introduction

According to Eq. (4.2), two ingredients contribute to the expected damage estimation: the joint distribution of
environmental parameters fx(vz), x € RM, and the computational model of the damage d%. Similarly to
Section 4.2, the focus of this section will be on the integration methodology, rather than on its specific application
to the wind-turbine case.

We write the integral of interest as (see also Eq (4.3)):
E[h(z)] = h(z)fx (xz)dz, (5.1)
Dx

where h(x) is a generally expensive-to-evaluate computational model y = h(x) that calculates a scalar quantity
of interest (Qol) y.

The focus here is to integrate Eq. (5.1) while minimizing the number of calls to the expensive h(xz). We
therefore assumed that the joint distribution fx () is either known, or enough information is available to properly
reconstruct an approximation from data. In the latter case, we use the data-driven vine-copula fitting approach
from Aas et al. 2009; Torre et al. 2019a, as it is implemented in the UQLab software (Marelli and Sudret, 2014;
Torre et al., 2024).

We also assume that the integrand h(x) is a finite-variance function w.r.t. probability distribution fx (X):

/ h()? fx ()da < oo, (5.2)
Dx

which is a relatively weak requirement for most physics-based models that calculate physically-interpretable quan-
tities of interest, such as stresses or accelerations.

5.2 Polynomial chaos expansions

Consider the Hilbert space H of finite variance functions w.r.t. to the probability distribution fx (x) (Eq. (5.2)),
endowed with inner product:

(h,9) € Ex [h(z)g(z)] = | h(@)g(w)fx(@)da. (5.3)

Then any function Y = h(X), h € H admits a spectral decomposition known as polynomial chaos expansion
(PCE, Xiu and Karniadakis (2002)) of the form:

h(x) = Z a6 Yo (), (5.4)

where aq = (h(x), Yo (x)) € R are scalar coefficients (coordinates), ¥, () are multivariate polynomials of total
degree d = |a|, and a € NM is a multi-index that represents the polynomial degree in each of the input variables.

M
In the special case of independent input variables, i.e. fx(x) = [] fx,(x;), the multivariate polynomials in
i=1

Eq. (5.4) can be obtained as tensor products of the univariate orthonormal polynomials zbi(i)(xi), with (¢;, ¢;) =
dij.  With this construction, it immediately follows that also their multivariate counterparts W (x) are also
orthonormal:

<\11047\Ijﬂ> = 501,37 (5'5)
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where the explicit dependence on @ was dropped for notational simplicity.

As with most spectral representations, an interesting property of PCE is that its coefficient encapsulate
interesting information about the model behavior. Of particular relevance to the case under investigation, we note

that ¥y def 1, and therefore:

ao = (1,h) ¥ Ex [h(z)] = A h(z)fx (x)dz. (5.6)

In other words, thanks to the spectral properties of PCE, the integral in Eq. (5.1) can be directly estimated as
the coefficient of the constant term in the polynomial chaos expansion of h. In case of non-independent input
distributions, isoprobabilistic transforms (e.g. Rosenblatt transform (Rosenblatt, 1952)) can be used to map the
original problem into the independent space.

Alternatively, Eq. (5.4) can be directly evaluated on any value of x, providing a very efficient and accurate
global surrogate model, which can run millions of times per second on common consumer hardware. This
particular methodology does not require isoprobabilistic transforms in the presence of dependence between the
input variables, as the coefficients are used only to calculate the response of the surrogate model. Once the
surrogate PCE is available, the integral in Eq. (5.1) can be directly estimated as a sample average over a large

enough sample of fx (x):
N

1 .
[ hax@)ie = @) ~ 5 3 h), 57)
=1
where (V) € X = {:c(1>, e ,:c(N)} is a set of I.I.D. realizations of the input random vector X

Advantages and disadvantages of both approaches in conjunction with PCE in the context of uncertainty
quantification are explored in detail in Torre et al. (2019a), and are outside the scope of this report.

Calculation of the PCE coefficients

Three main methodologies are available for the calculation of PCE coefficients, namely intrusive Galerkin
methods (Xiu and Karniadakis, 2002), stochastic collocation and sparse grids (Eldred, 2009), and sparse regression
(Luthen et al., 2021). Due to their flexibility and fast convergence with the number of runs of the computational
model, we adopt the sparse-adaptive PCE framework from Blatman and Sudret (2011); Liithen et al. (2022), as
implemented in the UQLab software (Marelli and Sudret, 2014; Marelli et al., 2024).

5.3 Numerical experiments

We present in this section numerical results on three numerical and analytical examples meant to represent the
following scenarios:

= An FEM model of a truss structure under random load, with both independent and correlated inputs,
showcasing the role of correlation in the integration performance.

= The same 10D analytical model of Test case #2 in Section 4.3.1, which showcases a problem without
unimportant variables and strong interactions.

= A variation of the latter, but in a different configuration with reduced interactions and unimportant variables.

Every numerical experiment is replicated Ny = 20 times with different random seed to assess the robustness
of the algorithm, and the results are presented as box plots for readability.

5.3.1 FEM model of a truss structure

Our first application is a FEM model of the truss structure under uncertain loads depicted in Figure 5.1 (modified
from Dubourg (2011)). This problem includes M = 10 input variables, representing the uncertainty in the
geometrical and material properties of the horizontal (4; and E;) and diagonal (A2 and E3) elements, as
well as the six loads Py, -, Ps, with lognormal marginal distributions and coupled by a Gaussian copula with
pij = 0.6, 1 # j. For reference, the full list of marginal distributions in this numerical experiment are reported
in Table 5.1.
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Table 5.1: Joint distribution of the input parameters for the 23-bar truss example in Section 5.3.1

Name Distribution Moments Notes
Ei o Lognormal = 2.1 x 10, 0 = 2.1 x 10*°

Ay Lognormal  pu=2.x1073, 0 =2.0 x 10™* Independent
A Lognormal pu=1.x1073, ¢ =1.0x 107%

Pi..¢ Gumbel p=50x10% 0 ="75x10>  Gaussian copula with p;; = 0.6

P1 P2 P3 P4 P5 P6

v v v vy

=
(o]
A \{ El,Al *Wl é

y 6x4m=24m v

Figure 5.1: Finite elements model of a 23-bar truss structure used in the fist numerical example, Section 5.3.1.
The horizontal elements are highlighted in blue, while the diagonal ones are highlighted in magenta.

This experiment is intended to showcase and compare the performance of the different integration approaches
described in section 5.1 on an actual engineering model with relatively high input dimension M = 10, some
unimportant variables and a complex joint distribution of the input parameters.

We compare here three different integration approaches, for an increasing number of model evaluations:

= LHS: Direct Monte-Carlo integration from a Latin hypercube sample (McKay et al., 1979) of the input
distributions (Eq. (5.7));

= Spectral PCE: Spectral integration according to Eq. (5.6), where a PCE is constructed on a reduced set
of input variables after decorrelating the inputs with Rosenblatt transform. The experimental design is an
LHS sample from the joint input distribution fx ();

= Independent PCE: Surrogate-based integration, by using a PCE constructed on the same experimental
design as the previous case, but assuming the input distributions independent (following the recommen-
dations in Torre et al. (2019a)). The integration is performed directly by substituting the computational
model h(x) in Eq. 5.7 with its PCE surrogate from Eq. 5.4.

Nyey
1 .
All estimates are compared to a reference MCS mean estimator fi.y = N Z h(z@), based on a large
ref =1

sample of size N,..; = 10%.

The results of the three integration methods are reported in Figure 5.2. The box-plots highlight the robustness
of the approach to the natural variability of the experimental design, as every calculation is repeated a total of
Nyep = 20 times.  The left panel of Figure 5.2 shows the convergence of the three methods to the mean value,
while the right panel shows the relative absolute error of the integral, as given by:

eR—‘ = 1‘, (5.8)

where [ is the value estimated by the method under examination.

All methods clearly converge to the reference value when increasing number of model evaluations. However,
direct MCS integration (LHS) converges distinctly slower than both PCE-based methods, and is particularly
sensitive to random seed variability, as most of the box-plots show a much larger scatter around the reference
value. Consistently with the findings in Torre et al. (2019a), the use of independent input variables followed by
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Figure 5.2: Comparison of different integration strategies for the finite-element truss structure in Section 5.3.1.
Left panel: convergence of the integral value (mean) as a function of the number of model evaluations in the
experimental design. Right panel: convergence of the relative mean absolute error for the same configurations.
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Figure 5.3: Comparison of different integration strategies for the finite-element truss structure in Section 5.3.2.
Left panel: convergence of the integral value (mean) as a function of the number of model evaluations in the
experimental design. Right panel: convergence of the relative mean absolute error for the same configurations.

numerical integration (Independent PCE), consistently outperforms both direct LHS sampling and the Spectral
PCE approach. The difference appears to be more marked with higher numbers of model evaluations, up to
multiple orders of magnitude for Ngp = 190.

5.3.2 High dimensional function with interactions

The second numerical experiment is a direct follow-up of Example #2 in Section 4.3.1, a high-dimensional
function without unimportant variables, and with important interaction terms. In this case the input variables are
independent, and therefore only results from the spectral PCE approach are reported. Figure 5.3 once again shows
that both direct integration and spectral PCE-based integration converge to the reference mean value (based on
a MCS integration with N5 = 108). Nonetheless, PCE shows a biased behavior towards lower values of the
integral, and an overall significantly worse performance in terms of relative absolute error. PCE integration also
shows significantly higher inter-seed variability w.r.t. direct LHS integration.

As a final example, we slightly modify the previous case, by changing the weight of the input variables inside
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Figure 5.4: Comparison of different integration strategies for the finite-element truss structure in Section 5.3.2.
Left panel: convergence of the integral value (mean) as a function of the number of model evaluations in the
experimental design. Right panel: convergence of the relative mean absolute error for the same configurations.

the reference function go(x) (Table 4.2):
N |4xi — 2| +a;
32(x) = [[ 5", a={2,5,10,20,50, 100,500,500, 500, 500} (5.9)

Additionally, the input distributions are considered independent standard normals. This function has fewer in-
teractions and unimportant variables w.r.t. the previous version (although the interactive terms still account for
more than 30% of the total variance of the model).

Figure 5.4 showcase the performance of spectral PCE integration. Overall, the performance is similar to that of
the previous case, with direct integration performing significantly better than spectral integration. The difference
in performance between direct and spectral integration, however, is significantly reduced in this experiment w.r.t.
the previous case.

5.4 Synthesis

In this section we have introduced the use of a spectral expansion, namely sparse polynomial chaos expansions,
to efficiently integrate expensive computational models over complex input distributions. While the methodology
performs well in several realistic conditions typical of uncertainty quantification studies, its main limitation lies
in the presence of strong interactions and high effective dimensionality, as it capitalizes on sparsity to achieve its
efficiency.

6 Reliability and robustness analyses in the context of fatigue

6.1 Introduction

One of the main goals of this work is to evaluate the reliability of an OWT's monopile foundation w.r.t. fatigue
solicitations. Let us recall the approach to assess fatigue damage over the structure’s lifetime (see IEC-61400-1,
2019, Appendix H). First, the lifetime before decommissioning time tq € R forms the interval T = [0, 4],
which can be used to define a probability space (T, B(T),U(T) = A/tq). Then, for all t € T' and assuming the
probability space (€2, .4,P), the random vector of the environmental conditions X(¢,-) is a measurable function
on (9, A) — (R?, B(R?)). Therefore, one can define the product probability space (T x Q, B(T)® A, U(T) @ P)
and the random vector X, which is a measurable function on (T'x Q, B(T)®.A) — (R4, B(R?)). For a realization
of X, denoted by X (t(i),w(r)), and a given set of parameters z = (ksoil, Oyaw, €) related to the system (defined in
Table 3.2), one can perform a 10-minute Turbsim-DIEGO simulation and compute the corresponding cumulative
damage (using Eq. (2.3)):

J10min (x (t(i),w(r)) 1Z = z) . (6.1)
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In practice, T is often discretized into Ny € N 10-minute intervals {t(i)}j\fl (IEC-61400-1, 2019, Appendix
H). The 10-minute duration results from the typical wind spectral density (see Burton et al., 2021), presenting
a “short-term” behavior (for turbulent wind with a return period below 10 minutes) and “long-term"” behavior
(otherwise, which is defined in Table 3.1). To cumulate the damage over the lifetime, one can write the sum of
10-minute damages, each averaged over .., € N pseudorandom seed repetitions:

D(z) = N7 E [d}"™™(X | Z = z)] (6.2a)
Nt Nrep
~ 1 10min (i) , ,(r) _
S Ny — ; ; d: (x (t W ) 1Z = z) . (6.2b)

In Section 4, KH was proposed as a method for given-data subsampling to propagate the uncertain environmen-
tal conditions on Teesside’s OWT model. This method showed equivalent performances to QMC for estimating
the lifetime damage in Eq. (6.2b), while being more flexible than QMC. Considering the linear cumulative damage
model typically used by the community (Miner's rule), a damage value higher than one leads to fatigue crack
initiation. The present scetion assesses the probability of such a rare event, considering both the environmental
uncertainties (aggregated according to Eq. (6.2b)) and the uncertainties related to the system itself (described
by the random vector Z € Dz with joint PDF fz). Assuming that the critical damage D, is a random variable
centered around one (equivalent to a “resistance” variable in the well-known “resistance-solicitation” paradigm in
reliability analysis Lemaire et al., 2009), this failure probability is written as:

bt = / ]l{D(Z)ZDC,} fZ (Z) chr (dcr) dz dd.; . (63)
Dz xR+

Less information is available to define the probabilistic model of the system uncertainties than the environ-
mental ones. Therefore, the robustness analysis of the failure probability w.r.t. the probabilistic model Z should
be studied. To do so, a perturbation-based approach using the perturbed-law based sensitivity indices (PLI),
originally introduced by (Lemaitre et al., 2015), is used in this section. However, the reliability and robustness
analysis requires a number of evaluations of the Turbsim-DIEGO simulator D(-) that would be prohibitive without
the use of surrogate models.

The present section is structured as follows: Subsection 6.2 presents the construction of a surrogate model of
D(-), then Subsection 6.3.1 analyses the reliability of the monopile foundation of Teesside's turbine for a nominal
distribution of Z, and finally Subsection 6.3.2 proposes a robustness analysis of p¢ by perturbing the laws of both
Z and D.,. Note that the contributions from this section were adapted from the PhD thesis of Fekhari (2024).

6.2 Surrogate modeling for reliability analysis

The prohibitive computational cost of the function D(-) requires fitting a surrogate model. This section presents
the specific high-performance computer (HPC) wrapper developed for this application and how it is used to build
a learning set for a GP regression model.

6.2.1 High-performance computer evaluation

The wrapper of the numerical chain including Turbsim and Diego (illustrated in Fig. 2.1) for reliability analysis
has a nested double loop structure. The outer loop pilots the realizations of Z while the inner loop concerns
the environmental conditions and their repetitions for 1., different pseudorandom seeds. Since € is a coefficient
applied to the damage as post-processing (see Subsection 3.4), one can fix it at a nominal value e = ¢ = 1. At
this stage, the goal is to approximate D(-) for any value of z = (ksoi1, Oyaw,€0). Using a KH design to explore
the environmental conditions as discussed in Section 4, this approximation is written as:

1 nx MNrep ) .
~ DKH _ 10min (i) ,,(r) _
Diz) = DXM(z) = Np— ; z::l d! (x W | Z = z) , (6.4)

where a KH design with size nx € N is denoted by {x(i)}?jl. According to the convergence results obtained
in Section 4, the KH size is fixed at nx = 200 and the repetitions at n.cp, = 11, which implies a total of 2200

Turbsim-DIEGO simulations per evaluation of the function D¥H(.). In this setup, the CRONOS HPC from EDF
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Figure 6.1: Learning set of the mean damage surrogate model. A Halton sequence is first built (in blue) and
completed by a set KH-generated points (in orange) in a subdomain defined a priori (in gray).

R&:D allows us to simultaneously perform those 2200 simulations in parallel. The random variable associated with
the S-N curve uncertainty is introduced later as a product factor of Eq. (6.4). Note that the cumulative damage
studied is actually the maximum value of D¥H(.) over the discretized azimuth angles (illustrated in Fig. 2.3), at
the mudline level.

6.2.2 Design of experiments

To build a learning set, a space-filling design of experiments is created on the joint domain of (K1, Oyaw).
This design was first composed of 30 points generated by a Halton sequence (illustrated in Fig. 6.1.a) which
was the most space-filling sequential method (compared to other QMC sequences and KH). Its evaluation and
analysis showed that the highest damage values are the result of high absolute values of Oy, or low values of
Ko Therefore, the design was completed in a second phase by 20 points targeting these areas by applying
kernel herding to a subdomain defined a priori (see the candidate set represented by the gray points in Fig. 6.1.b).
Finally, the learning set is the union of the two complementary designs, later referred to as the “mixed design”
(see Fig. 6.1.b). This mixed design, denoted by Z,,, has a size of nz = 50 points, which represents over
10° Turbsim-DIEGO simulations (each requiring around 45 minutes of CPU time). Fig. 6.2 shows the lifetime
cumulated damage evaluated on the mixed design (with normalized values corresponding to the color scale).

6.2.3 Gaussian process regression

A GP regression with Matérn 5/2 and constant trend is fitted on the mixed design Z,,, according to the Kriging
equations, recalled in Eq. (4.16). The resulting surrogate model 550 : R? — R, which approximates DX (.. . &),
is represented by the blue three-dimensional surface in Fig. 6.3, and its learning set Z,, by the black crosses.
A complementary visualization of this surrogate is proposed for cross-sections with fixed values Oy, = 0 on
Fig. 6.4.a, and kg = 1 on Fig. 6.4.b. On these two figures, learning points are plotted in a grayscale and the
surrogate model in a blue scale. The darker the shade, the closer to the cross-section the points are.

One can first notice that the damage is not symmetric w.r.t. the yaw misalignment 0y.,,. When the nacelle
perfectly aligns itself with the wind direction, this angle is equal to zero. For this bottom-fixed OWT, introducing
a yaw error of the same amplitude has more impact in one direction than the other. In the meantime, the soil
stiff kg0 has, as expected, a monotonic influence on the damage.
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Figure 6.2: Mean damage evaluated on the mixed design illustrated in Fig. 6.1.b.

To validate this surrogate model, a leave-one-out (LOO) procedure is realized. Fig. 6.5.b represents the LOO
squared-residuals at each point of the design (with values corresponding to the color scale). High residual values
are mostly due to the strong nonlinearity of the code in some areas (as revealed by the cross-section in Fig. 6.4.b).
Fig. 6.5.a shows the quantile-quantile plot comparing the LOO predictions with the lifetime damage evaluations
on the learning set. The general coefficient of predictivity of Q7 = 0.72 is considered acceptable in this small
data context, especially as the LOO procedure was shown to underestimate the true performance metric in Fekhari
et al. (2023). However, the surrogate could be enhanced by adding points to the learning set in areas with high
nonlinearities.

Remark 5 Active learning methods for reliability assessment could be a great option for a such costly computer
model. However, the stochasticity of the function would disturb the learning criterion. Since the nonlinearities
seem restricted to a small area, the present approach should be more robust. Another approach could be to fit
a stochastic surrogate (Binois et al., 2019; Baker et al., 2022; Zhu, 2022) on a learning set before averaging on

the pseudorandom seed repetitions.

Figure 6.3: Three-dimensional plot of the surrogate model D, (in blue) and learning set (in black).
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Figure 6.4: Cross-section of the surrogate model 550 (in shades of blue) for given values of Kyuii and Oyay. The
darker the shade, the closer to the cross-section.
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Figure 6.5: Leave-one-out validation results of the surrogate model 550.

6.3 Reliability and robustness analysis

In the wind energy industry, acceptable risk levels for fatigue are defined by the standards. The target failure
probability of the order of magnitude of 10~* over the last year of exploitation is recommended by the IEC-61400-1
(2019) while the recommendations of other standards are reviewed by Wang et al. (2022). Nielsen and Sgrensen
(2021) discussed the relevance of this risk level, defined from an economic point of view, and offered quantitative
guidelines for lifetime extension. In this section, a reliability analysis is conducted using the surrogate model of
the lifetime cumulative damage previously constructed in Subsection 6.2.3. Afterwards, the robustness of this
reliability analysis is studied by applying perturbations to the input distributions and computing the perturbed-law
based sensitivity indices (PLI) initially proposed by Lemaitre et al. (2015).

6.3.1 Nominal reliability analysis

The S-N curve uncertainty can be expressed as a simple coefficient € (see Subsection 3.4), which is applied to
the lifetime cumulative damage as follows:

1
D(ksoiheyawyg) = ED(ksoilaeyaw;EO)- (65)
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Therefore, the surrogate model of the lifetime cumulative damage ﬁgo is modified without updating its learning
such as:

~ ~ 1~
D(Z) = D(ksoilaeyawyg) = g Dso(ksoila gyaw)- (66)
The probability introduced in Eq. (6.3) then becomes:
/ ~
Pr= /DZ L 5s)>p,,y 12(2) 4z (6.7)

Table 6.1 presents the estimates of this quantity by various methods (FORM, FORM-IS and SS, see Morio and
Balesdent, 2015) and for two different distributions of the resistance variable. D, either follows a lognormal
distribution (which has a short left tail), or a truncated normal distribution on [0, +o00[ (with a heavier left tail).
All methods deliver similar values of pr even if FORM-IS converges faster than SS when comparing the coefficients
of variation (COV). The adequation of FORM with the simulation methods reveals that the LSF in this case is
almost linear. This linearity is mostly due to the nature of the LSF, following a resistance-sollicitation paradigm as
introduced earlier. The probabilities are, as expected, much lower under the hypothesis of lognormal distribution
for D., than for a normal distribution. However, this significant difference questions the robustness of this result
w.r.t. the probabilistic model of both D, and Z.

Table 6.1: Nominal reliability analysis (size N =5 x 10 for IS and SS. py = 0.1 for SS).

Der ~ LN (pp,, =1, 0%, =0.3?) | Do ~ N(p =1, 0% = 0.32)
Reliability method i ‘ cov o’ ‘ cov
FORM || 9.87 x 10713 - 3.35 x 1076 -
FORM-IS || 9.84 x 10~13 1% 3.36 x 1076 1%
SS || 9.46 x 10~13 7% 3.50 x 10~6 4%

6.3.2 Robustness analysis using perturbed-law sensitivity indices

The method of Lemaitre et al. (2015), later called perturbed-law based sensitivity indices (PLI) by Sueur et al.
(2017) relies on perturbating input densities. The goal is to assess the robustness of a quantity of interest (here, a
failure probability) w.r.t. these perturbations. This type of index is for example used in studies of thermal-hydraulic
numerical models for nuclear safety (looss et al., 2022).

Assuming a random variable Z; ~ f; € Dy, with mean E[Z;] = p and variance Var(Z;) = o2, the strategy
is to find the “closest” distribution f;s under the constraint of moment perturbation of magnitude J. The notion
of proximity between distributions is quantified by Lemaitre et al. (2015) in terms of Kullback—Leibler (KL)
divergence. For example, a relative mean perturbation is defined as:

fis = arg r;)lin KL(7|[f5) , (6.8)
TeP,
5.t Ex[25]=Ey, [2;](1+5)

where § € R denotes the relative perturbation, and P is a family of distributions.

Note that the perturbed distribution f;5 might not belong to the parametric family of f;. This is typically the
case for bounded distributions (e.g., when perturbating the mean of a uniform distribution). Separate approaches
exist to define perturbations for the problem studied, such as Lemaitre et al. (2015), or Gauchy et al. (2022).
However, to ease the computation in the following, the perturbations will conserve the initial parametric family
(which seems reasonable for distributions in the exponential family).

The adapted expression of the PLI used hereafter (Gauchy et al., 2022) reflects the relative impact of a
perturbation on the quantity of interest:

PLI(f) = 25 21 (59)

where pg js is the probability obtained when injecting f;s in Eq. (6.7). Although this PLI expression is simple to
manipulate, it is not symmetric, i.e., when ps js — 0, PLI(f;5) — —1 and when ps ;s — 1, PLI(f;5) — 1/ps.
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Figure 6.7: Perturbed-law based indices for relative perturbations of the standard deviations of (K1, Oyaw, €).
The failure probabilities studied are each estimated by FORM-IS method on the surrogate model (with sample
size N =5 x 10%).

In the following, each variable in Z is perturbed one by one in terms of relative standard deviation, such that
ojs = 0j(1 4 9). The illustration of such perturbations is given in Fig. 6.6, for distributions of K, on the left,
and of Oy, on the right. This strategy assumes that the analyst has enough information to determine the mean
of the variables Z;.

The resulting PLI are presented in Fig. 6.7 for relative perturbations of the standard deviations of (K1, Oyaw, €)-
Each failure probability is independently estimated by FORM-IS. In the hypothesis of a normal D, the most
important variable is ©y,y, while the fluctuations are quite stable in the hypothesis of a lognormal D.;.

When perturbating the standard deviation of the resistance variable D, the same phenomenon is witnessed
in Fig. 6.8. The perturbations have nearly no consequences, assuming that D., ~ LogNormal, but a lot of
influence when D, ~ Normal. As a perspective, this study could be completed by a joint perturbation of both
the standard deviation and mean of the resistance variable.
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Figure 6.8: Perturbed-law based indices for relative perturbations of the standard deviation of D... The failure
probabilities studied are each estimated by FORM-IS method on the surrogate model (with sample size N =
5 x 10%).

6.4 Synthesis

In this section, a fully probabilistic reliability analysis was performed on the monopile foundation of an OWT
located in Teesside, UK. This first reliability study required a significant computational effort (i.e., over 10°
Turbsim-DIEGO simulations), made possible with the development of a tailored wrapper deployed on a HPC
facility. These simulations served the construction of a surrogate model emulating the lifetime damage function.

The second part of this section addressed the estimation of a failure probability using this surrogate model.
A general conclusion is that this probability is highly dependent on the probabilistic model describing the critical
damage. To challenge the modeling assumptions of the critical damage and the system variables, a robustness
analysis was realized. It consists in studying the impact of perturbating the input distributions on an output
quantity. The robustness of the failure probability was evaluated with the formalism of the perturbed-law based
indices, introduced by Lemaitre et al. (2015). This additional study mostly confirmed the importance of the
critical damage definition.

From an industrial point of view, the failure probabilities obtained are much lower than the risk levels targeted
in current standards (Wang et al., 2022), which is in favor of lifetime extension. However, the results of this
demonstrative study may be questionable with respect to several effects that were not considered:

= The periods in parked position which could significantly increase the damage (see Velarde et al., 2020).
Several studies showed that the aerodynamic damping created by the rotation of the turbine reduces tower
vibrations, and therefore fatigue (Liu et al., 2017);

= The rapid transition phases occasioned by emergency stopping, which might increase fatigue;

= The early damage produced during the installation of the monopile foundations by hydraulic impact piling
(i.e., hammering);

= The stress-concentration resulting from soldering the structure.
= The consideration of wake effects at a farm scale, affecting the environmental solicitations on the turbines.

The next section reproduces the previous results, for wind conditions pertubated by the wake effect inside the
Teesside farm. This complementary study aims at quantifying the impact of the wake on the cumulated fatigue
damage.

As a methodological perspective, a stochastic surrogate model could be built by considering all the damages
without averaging them over the environmental repetitions. The risk assessment would then be conducted on a
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stochastic function. In this particular context, quantile estimation was studied by Browne et al. (2016), however,
rare event estimation on stochastic functions remains an open question recently discussed by Pires et al. (2023).

7 Reliability and robustness analyses including the wake

7.1 Introduction

The wake arises from extracting kinetic energy from the wind, leading to a decrease in wind speed and an increase
in turbulence downstream of the turbines. Inside a wind farm, it mostly depends on the turbines’ layout, the
ambient wind speed, and the ambient turbulence intensity. The resulting heterogeneous wind field in a wind farm
can be simulated by numerical models with different fidelities (see e.g., Doubrawa et al., 2020).

This work exploits the results from another HIPERWIND deliverable, which propagated Teesside's ambient
metocean conditions through a simplified wake model (Ardillon et al., 2023). Such wake models (sometimes
called "dynamic wake meandering”, or “engineering” models, see the seminal paper of Jensen, 1983) are used to
simulate the wind speed deficit and the added turbulence at each turbine. In Ardillon et al. (2023), the ambient
metocean distribution from Teesside has been propagated through a dynamic wake meandering model using a
Monte Carlo sample (with size N = 8000), as a result, one can retrieve a wake-perturbed wind distribution at
each turbine. Having different wind distributions naturally impacts the loading and should be considered during
fatigue assessment at a farm scale. Note that this heterogeneity is mostly considered in international standards
via empirical coefficients (also called “effective turbulence”). Doubrawa et al. (2023) compares the use of the
effective turbulence approach with dynamic wake meandering models and studies their impact on loading.

As illustrated in Section 6, assessing the fatigue reliability on a turbine represents a significant computational
effort. However, as a consequence of the wake modeling, each turbine presents a different wind distribution,
which implies repeating a fatigue assessment for every turbine. To make this computation tractable at the farm
scale, Lovera et al. (2023) proposed a way to build clusters of turbines similarly affected by the wake. The MMD
is then used as a statistical dissimilarity measure to compare the perturbed distributions induced by the wake and
to perform the clustering. Finally, fatigue assessment could be computed on a few turbines, each representing a
cluster of turbines facing similar wake-modified wind loading.

After assessing the fatigue reliability of a WT tower w.r.t. the ambient metocean conditions, this section
additionally examines the effect of the wake on fatigue reliability. Because of the massive number of TurbSim-
DIEGO simulations required by the reliability assessment in Section 6 (over 10° simulations, each requiring
around 45 minutes of CPU time), the fatigue reliability analysis is only repeated for one wake-affected metocean
distribution. Naturally, the turbine most affected by the wake is the one where this additional study is carried
out. According to the map of dissimilarity measures between wake-affected and ambient conditions, illustrated
in Fig. 7.1, WT14 is the most affected by the wake. This hypothesis seems reasonable, considering its central
location within the farm.
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Figure 7.1: Dissimilarity measure between Teesside's ambient metocean distribution and the wake-perturbed
distributions at each wind turbine (see Lovera et al., 2023 for further details)
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First, let us denote by X14 the wake-perturbed metocean random vector at the wind turbine #14. Then,
similarly to the formalism introduced in Eq. (6.2b), one can defined the wake-perturbed cumulative damage over

10 minute as: _
Dy14(2) = Np E [di™™ (X 14| Z = 2)] (7.1)

this quantity can be estimated by KH, identically to Eq. (6.4), as:

1 nx MNrep ) ;
Dy14(z) = DX (2) = Ny e 3OS aiomin (sth,w(r) 1Z = z) , (7.2)
TP =1 r=1

. n
where a KH design with size nx € N is denoted by {x&fh}‘x . Once again, the KH size is fixed at nx = 200

1=

and the repetitions at n.e, = 11, which implies a total of 2200 Turbsim-DIEGO simulations per evaluation of the
function DX (.). Note that the kernel herding sample is directly built using the Monte Carlo evaluations of the
wake model (with size N = 8000) as candidate set (see Lovera et al., 2023 for further details).

7.2 Surrogate model for reliability analysis

In the same fashion as the expression in Eq. (6.5), the uncertainty related to the S-N curve ¢ is simply introduced
by a coefficient applied at the post-processing phase. Therefore, considering a nominal value ¢ = ¢g = 1, one can
express the wake-perturbed cumulative damage as:

1 1
DW14(kSOil7 ayawy 5) = g Dw14(ksoi17 Hyawv 50) ~ g D\};i(ksoil, eyawv 50)- (73)

Once again, a GP regression 560,W14 : R? — R based on the same input design of experiments Z,,, (with a
size of nz = 50), and same tuning as in subsection 6.2 is built to emulate the computationally costly function
DEH (- - g9). After analyzing the results presented in Fig. 7.2, and Fig. 7.3, one can notice that the evaluation
of the function DX over the design Z,,, presents similar trends as the results in the ambient case (illustrated in
Fig. 6.3). However, the cumulative damage values appear to be smaller in the wake-perturbed case of turbine 14
(see Fig. 7.2) than for the ambient case (see Fig. 6.2).

__ The new surrogate model is again validated by LOO, allowing us to estimate its predictivity coefficient
Q%60 = 0.92, and to represent its quantile-quantile plot in Fig. 7.5.a. The improvement in terms of predic-
tivity coefficient can be explained by analyzing jointly the map of LOO squared residuals in Fig. 7.5 and the
cross-section visualizations of the learning set in Fig. 7.4. In the previous LOO squared residuals map, most of
the underperformance was due to the points on the upper border of the domain in Fig. 6.4. While the new LOO
squared residuals map in Fig. 7.5.b presents the same pattern, the values of the residuals in this area are signif-
icantly lower. This might be explained by the stronger regularity of the wake-perturbed function which appears
clearly in the cross-section represented in Fig. 7.4.b.
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Figure 7.2: Mean damage evaluated on the mixed design illustrated in Fig. 6.1.b.
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7.3 Nominal reliability and robustness analysis

In this section, the reliability and robustness analysis conducted in Section 6 are reproduced using the surrogate
model D, w14, built w.r.t. a wake-perturbed metocean distribution at the turbine #14. For the reliability
analysis, Table 7.1 presents the updated values of failure probability for different methods. One can notice that
the values of failure probability estimated in the wake-perturbed case are very close to the ones in the ambient
case (presented in Table 6.1). This results may be counter-intuitive as the wake-perturbed cumulative damages
in Fig. 7.2 were lower than the ambient ones in Fig. 6.2. However, this result can be explained by the prime
importance of the resistance variable in this reliability analysis. For the robustness analysis, the PLI values obtained
in the wake-perturbed case in Fig. 7.6 and Fig. 7.7 are once again similar to the ones from Section 6.

Table 7.1: Nominal reliability analysis (size N =5 x 10 for IS and SS. py = 0.1 for SS).

Der ~ LN (pp,, =1, 05 =0.3%) | Doy ~ N(p =1, 0% = 0.3%)
Reliability method i ov | v
FORM || 9.97 x 10~13 - 2.84 x 1076 -
FORM-IS || 9.88 x 1013 1% 2.87 x 1076 1%
SS || 1.08 x 1012 7% 2.84 x 1076 4%
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Figure 7.6: Perturbed-law based indices for relative perturbations of the standard deviations of (K1, Oyaw, €).
The failure probabilities studied are each estimated by FORM-IS method on the surrogate model (with sample
size N =5 x 10%).

7.4 Synthesis

In this section the reliability analysis and robustness analysis performed for the ambient metocean conditions in
Section 6 were repeated by taking the most wake-perturbed metocean distribution inside Teesside's wind farm.
After building a surrogate model of the mean cumulative damage at the mudline level of the foundation, the
failure probability w.r.t. the critical damage has been estimated using FORM, FORM-IS and subset simulation
algorithms. The values of failure probability when considering the wake-perturbed conditions appeared to be
very close to the ones estimated previously. Then, the robustness of this quantity has been studied with the
PLI approach for two distribution assumptions for D, }, which showed again similar conclusions as the previous
section. The critical damage D, } is the uncertain variable which has by far the most impact on the reliability in
this case.
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Figure 7.7: Perturbed-law based indices for relative perturbations of the standard deviation of D... The failure
probabilities studied are each estimated by FORM-IS method on the surrogate model (with sample size N =
5 x 10%).

8 Conclusion

This work is related to uncertainty propagation in the multi-physics numerical model of an OWT, called DIEGO.
A first contribution concerns the estimation of lifetime cumulative fatigue damage as a mean against the envi-
ronmental conditions (see e.g., Miiller and Cheng, 2018). In Section 4, Bayesian quadrature methods such as
kernel herding (Chen et al., 2010; Huszar and Duvenaud, 2012) proved to be an efficient and flexible solution
for given-data uncertainty propagation (i.e., directly subsampling a large dataset without inference). Our numer-
ical experiments showed conclusive results in comparison to Monte Carlo and quasi-Monte Carlo sampling. This
development was gathered in a Python package named otkerneldesign.

As a perspective, the damage surrogate modeling could be further studied (e.g., extending the work of Slot
et al., 2020). Recent techniques for stochastic emulators could be tested on this case (Baker et al., 2022; Zhu
and Sudret, 2023; Lithen et al., 2023). However, the method used should also be robust to the highly skewed
distribution of the output variable. The mechanics could be approximated more accurately by considering other
cumulative models for fatigue rule rather than Miner's rule. For example, nonlinear models (Rocher et al., 2020)
take the order of occurence of the cyclic solicitations into account.

On top of averaging the cumulative damage over the environmental conditions, other variables related to the
system can are considered random in Section 6. Therefore, a second contribution deals with the reliability analysis
based on a few system variables: soil stiffness, S-N curve parameters, yaw misalignment, and damage resistance.
This study was made possible by the use of HPC facilities and a surrogate model built on a space-filling design over
the system variables. Beyond the evaluation of a monopile foundation's failure probability, this work studied its
robustness to the perturbation of input distributions. The perturbed-law based sensitivity indices (Lemaitre et al.,
2015) were applied to assess the relative influence of perturbating the inputs’ moments. This demonstrative study
on the Teesside wind farm showed that the failure probabilities estimated are much lower than the recommended
valued.

An industrial perspective regarding the reliability analysis is its application to a floating wind turbine case.
This setup could introduce additional nonlinearities arising from the stronger impact of the waves on a floating
structure. Along with fatigue reliability, the connection with other failure modes such as extreme loading could
be studied (see, for example, the recent study on ultimate limit states by Wang et al., 2023).
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