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HIPERWIND 1 EXECUTIVE SUMMARY

1 Executive Summary
Large safety margin can be gained in the design of Offshore Wind Turbines (OWT) by
reducing the uncertainty. This report focuses on Ultimate Limit States (ULS) which are
deemed to often be the critical conditions of design. Current versions of international
standards IEC (2019b,a); DNVGL (2018) introduce a deterministic formulation in which
sources of uncertainty are represented by safety factors on load and resistance parts. These
factors were inherited from offshore oil and gas engineering, and need to be re-calibrated
for the different context of offshore wind. We consider here several reliability methods with
the aim to demonstrate their feasibility in the analysis of realistic use-cases.

Section 2 introduces the context and motivation of this work, referring to few research
papers on OWT reliability. Section 3 presents the probabilistic formulation of ULS that is
retained in this report, with the list of various uncertainty contributions, including that on
wind and wave representation, model approximation and material resistance.

Section 4 compares four methods dedicated to the case of stationary ULS on a simpli-
fied 2D benchmark in wind parameters, with NREL 5MW turbine and a surrogate model
developed in Dimitrov et al. (2022); Schär et al. (2023) to replace the time costly mul-
tiphysics simulator. The methods are Environmental Contour, Bayesian Neural Network
(BNN), Gaussian Process (GP) with sequential sampling, and an outcrossing optimization
in jointed Long-Term (LT) and Short-Term (ST) space. Due to the challenging difficulty to
get an accurate estimate of the tail distribution for the critical loading on OWT components,
most of the methods did not succeeded to compute the annual failure probability with a
feasible computational time. The BNN faces difficulty due to the Gaussian assumption of
the tail distribution. The outcrossing optimization is limited by FORM in high dimensions
with possible non connected local minima. However, the method with GP and sequential
sampling is demonstrated to be well suited for this application, if sorting a minimum number
of stochastic seeds to capture the ST variability (introduced by wind turbulence and wave
irregularity). It compares well with Q90 contours loading for a fixed foundation OWT but
not for a floating OWT as failure domain appears to be inside the contour. The conver-
gence of annual failure probability with this method is more difficult than for return period
but the reason found is due to very few outliers significantly deviating from the Gumbel fit
of ST maxima which may be explained by the use of a surrogate out of its training domain
instead of a physical simulator of offshore wind turbine dynamics.

Section 5 investigates with the same objective two methods dedicated to the case of
transient ULS, with the occurrence of wind gust and possible synchronous grid-loss for the
case of an OWT supported on a monopile of Teesside wind farm of EDF (East coast of UK).
Gusts are defined according to the selection of real events from Kelly and Vanem (2022)
instead of the IEC Extreme Operating Gust (EOG). The transient ULS dependency on ST
parameters is small enough to be neglected when compared to that on LT parameters. A
Monte-Carlo (MC) sampling shows that shutdown only do not provide higher load than the
stationary case (extreme operational conditions) while the extreme load is largely increased
when introducing gust. Within gust parameterization, acceleration provides the dominant
effect on ULS. To improve the feasibility of such method for computing the failure proba-
bility, an approach combining GP and active learning is then presented on the same case
study.

In section 6, we demonstrate the feasibility of the reliable ULS approach, with an appli-
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cation on an OWT of the Teesside wind farm. From a series of simulations, the selected
critical condition is found to be that of plasticity on the monopile at mudline in extreme
parked (idle) condition corresponding to DLC6.1. The GP with sequential sampling method
successfully converges to a very small annual failure probability much lower than the ad-
missible target of 1.E-4, indicating that the initial design is significantly conservative. An
optimization of the tower and monopile design is then conducted by reducing the thickness
while checking several constraints for buckling, reliable plasticity at monopile mudline, man-
ufacturability and tower resonance. This optimization with reliable condition was possible
thanks to a conservation of the bending moment when changing the design. A final design,
mainly constrained by the tower resonance, was found with 21% mass reduction.

Section 7 presents the application of the sequential sampling approach for the floating
case study of IEA15MW on UMaine semi-submersible in a South Brittany (West coast of
France) site Allen et al. (2020); Capaldo et al. (2021); Peyrard et al. (2022). Similarly to
the Teesside case study, the failure probability was estimated with good confidence, after
few enrichment cycles only. Furthermore, no optimization was required, as the initial design
was already near the design target for the tower basis plasticity in extreme parked (idle)
condition.

Section 8 investigates the influence of uncertainty on the wind and wave joint probability,
representative of the farm site, on the ULS annual failure probability of the Teesside case
study. Taking advantage of the GP final surrogate obtained at the convergence of the
sequential sampling method, uncertainty can be propagated without requiring additional
simulations. The results show an important effect of the environmental uncertainty on the
ULS reliability, suggesting it is worth paying attention to the joint probability fitting, as
discussed in Vanem et al. (2023).

Finally, conclusions and perspectives which would be interesting to investigate in future
works are given in the last section.

2 Introduction
Offshore wind industry is currently going through a particular market context with a drastic
increase of instability after Covid and geopolitical crises. This has put tension on the supply
chain an even resulted in several non attribution of assets due to too low return values for
operators and investors GWEC (2023). This is particularly true for the case of floating
wind installations which are still waiting for the transition from pilot units to industrial
deployment.

This situation is not to be interpreted as a loss of interest in this relatively new sector,
as offshore wind energy still remains one of the most credible source of renewable energy
with current technology. However, it points to the need of lowering the risk for capital
investments and insurance, as the failure probability is expected to be significantly higher
for Offshore Wind Turbines (OWT) than for onshore ones Li and Guedes Soares (2022). To
achieve such a goal, the designer have first derived their conceptions following the guidelines
of international standards like IEC (2019b,a); DNVGL (2018), which formulate the problem
in terms of target reliability (typically of 10−4 for annual failure) and deterministic limit
states, uncertainties being accounted for by the use of safety factors on both load and
material contributions (see Section 3).
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However, the values of these safety factors are deemed to be inherited from oil and
gas return of experience for which loading conditions are significantly different than that
on offshore wind turbines, requiring to recalibrate them Velarde et al. (2020); Morató and
Sriramula (2021). Indeed, OWT are generally installed in shallower water depths (typically
up to 60 m for bottom-fixed supports among which monopile are predominant and up to
few hundred of meters for floating cases) with harsher sea states. Furthermore, the wind
turbine dynamics are also sensitive to turbulent wind interaction, controller strategy and
is submitted to a risk of resonance over multiple frequencies from low ones associated to
large time varying wind, of the order of 0.1 Hz for waves, few times the latter for rotor
harmonics and then up to few Hz for the structure elasticity Vorpahl et al. (2013); Velarde
et al. (2019).

For all these reasons, several papers on OWT design have introduced since many years
the need to develop reliability approaches, taking explicitly into account all sources of
uncertainty (stochastic environmental conditions, epistemic model approximations including
that of reliability approach, and both epistemic and stochastic resistance parameters) for
evaluating an annual failure probability for a given OWT design Tarp-Johansen et al. (2005);
Veldkamp (2008); Muskulus and Schafhirt (2015). Considering that the risk for wind
turbines is mainly economical, Nielsen et al. (2023) recently presented a more holistic
risk-based assessment approach to estimate the optimal target failure probability from the
different cost terms on the expected lifetime horizon: benefits from power production,
construction cost, operation and maintenance costs and cost of structural failure. Based on
these considerations, an IEC technical specification (IEC, 2023) is currently in preparation.
It provides a formal definition of the probabilistic approach to wind turbine design.

As mentioned in previously cited OWT standards, the designer should consider several
limit states for all components of the OWT which are classified into Ultimate Limit States
(ULS), Fatigue Limit States (FLS), Service Limit States (SLS) and Accident scenarios. In
IEC (2019b); DNVGL (2018), bases of Design are composed by a list of Design Load Cases
to be checked, corresponding to these limit states. Finding the most critical DLC and more
specifically the most critical limit state (including the location of the component on the
structure), for a given OWT design in site-specific conditions, is not trivial and is rarely
discussed in the literature. From the author’s experiences, the more critical conditions are
however usually found for ULS or FLS. If most of OWT ULS reliability literature focuses on
a single OWT case only, in reality the designer has first to consider the OWT configuration
within a given farm. In addition to possible variability of site (e.g. water depth) and OWT
configurations in a wind farm, the main effect is the well know wake deficit and added
turbulence in a zone downwind and close enough to an operating turbine. Concerning
design conditions, the most obvious effect is that of added turbulence which may increase
the fatigue on downwind OWT. However, standards also mention that the wake added
turbulence should be added to the ambient one for extreme operational ULS for Extreme
Turbulence Model DNVGL (2016). In the present work, for the sake of simplification we
will however consider that we can neglect the wake effect on ULS design in probabilistic
design. Contrarily to the FLS investigated in D43 report of HIPERWIND, we will hence
not consider the wake modification of mean speed and turbulence in the wind farm case
studies which was obtained in Ardillon et al. (2022). Consequently, the studies of this report
will consider a single representative OWT which is submitted to turbulent ambient wind
conditions which probabilistic distribution is assumed to encompass that of any turbine

3



HIPERWIND 2 INTRODUCTION

within the farm.
Many approaches have been devoted to the fatigue risk Veldkamp (2008); Horn et al.

(2019); Velarde et al. (2020), arguing that OWT are submitted to a huge number of load
variations during their service life, about 25 years, and also motivated by the great difficulty
to detect the risk of fatigue damage during maintenance visits. As poly-cyclic fatigue is an
accumulation of microcracking coalescence over most of the structure life, its evaluation
requires to compute the mean expectation over the joint probability of all environmen-
tal conditions, hence introducing a computational challenge for OWT where both wind
and wave parameters combination need to be considered. However, due to the weight
of occurrence, the main contribution to FLS is expected to come from the body of joint
distributions which is more easy to determine than the tail of the distributions. This is
particularly true when few monitoring data are available in pre-design and during the first
years of exploitation for the reevaluation of structure reliability. Despite of its importance,
FLS is nevertheless dominated by a very large uncertainty (typically of log-normal distribu-
tion with Coefficient of Variation (CoV) up to 0.3) due to the very strong approximation
of independent load events with Palmgren-Miner cumulative linear damage which neglects
the time-dependency Veldkamp (2008); JCSS (2011); Muskulus and Schafhirt (2015). It
is then unlikely that OWT operators will accept to reduce the FLS conservatism until this
approximation can be clearly evaluated. Such goal is very ambitious, as it would require
to consider the whole stochastic combinations over the service life. Fortunately, with the
increase of monitoring on OWT structural components, the research community on offshore
wind is currently developing new techniques based on digital twins (i.e. combining models
and monitoring data) which will be helpful to reduce the fatigue uncertainty as the life
of the OWT advances Dimitrov and Natarajan (2019); Wang et al. (2022); Dimitrov and
Göçmen (2022); Branlard et al. (2024); Moynihan et al. (2024).

Conversely to FLS, ULS approaches first rely on an accurate determination of the tail
distribution of the OWT component load. Often this estimation is based on statistical
extrapolation, which is associated with large uncertainty Dimitrov (2016); van Eijk et al.
(2017).

Considering the target annual failure probability of 10−4 in standard, van Eijk et al.
(2017) claimed a sample of size up to 105 needs to be available for an acceptable prediction
of 50-years ULS with deterministic and safety factors approach and both for aggregate-
before-fitting (i.e. fit on whole data) or fitting-before-aggregate (e.g. binning on mean
wind speed suggested by IEC). Because ULS of OWT is interested in rare events, the
designer is facing a locking challenge of numerical computations, enhanced by the high
computational cost of aero-servo-hydro-elastic simulations Vorpahl et al. (2013).

To palliate these limitations, several approaches have been proposed which replace costly
simulations with surrogate models (e.g. GP Huchet et al. (2019); Slot et al. (2020);
Cousin (2021); Cousin et al. (2024) or Polynomial Chaos Expansion (PCE) Dimitrov et al.
(2018); Slot et al. (2020), Artificial Neural Network Müller et al. (2017); Wang et al.
(2023), Bayesian Neural Network (BNN) Dimitrov et al. (2022) or auto-regressive with
exogenous input model (mNARX) Dimitrov et al. (2022), Schär et al. (2023)) with the
possibility to use a traditional Monte-Carlo (MC) reliability strategy. Alternately, one can
directly reduce the number of calls to the simulator in the integration with e.g. Bayesian
quadrature combined to kernel herding Fekhari et al. (2024). Another way to lighten
the computational burden is to use well known optimisation approaches in reliability that

4



HIPERWIND 2 INTRODUCTION

are First-Order Reliability Method (FORM) or Second-Order Reliability Method (SORM)
Lemaire et al. (2009). However, FORM and SORM assume linear and quadratic limit states
respectively which may be not relevant for the non-linear dynamics of OWT Velarde et al.
(2019). To avoid such limitations, it is also possible to use variance reduction techniques
like Importance Sampling Dimitrov et al. (2018); Muskulus and Schafhirt (2015); Murangira
et al. (2015). Finally, another way that has been suggested is to assume that LT variation
of parameters dominate over ST (typically 10 min) ones on the limit states, allowing to
reduce the integral over the input parameters multi-dimensional domain to a contour on
50-years joint probability Winterstein et al. (1993); Vanem (2018); Velarde et al. (2019).
However, contour methods will provide loads corresponding to a return period rather than
failure probability.

If these approaches reduce the complexity they have however been insufficient to allow
the common use of the reliability methods in industrial design of OWT. In this report, we
investigate several new ULS methodologies with the goal to evaluate their feasibility for
the design of representative use cases of OWT. The following sections first present the
probabilistic formulation of ULS used in this report. We distinguish the case of stationary
events from that of transient events which correspond to different dedicated methods.
Section 4 compares on a simplified 2D benchmark four methods : Environmental Contours,
BNN, GP with Sequential Sampling, and Outcrossing with Optimization of Long-Term (LT)
and Short-Term (ST) parameters. Only the GP with Sequential Sampling was selected for
giving acceptable accuracy on the annual failure probability with feasible computations.
Section 5 similarly presents a method for the case of a transient event combining gust
measurements selected in 16 years of measurements during WP2 of HIPERWIND project
Kelly and Vanem (2022) with a possible loss of grid connection.

Once the annual probability of failure is estimated, assuming the design was appropriately
done with a safety margin, the designer would like to take advantage of this knowledge
to reduce the CAPEX for instance by removing material in some components. When
going to this perspective, one enters the very challenging world of Reliability-Based Design
Optimisation (RBDO). Indeed, as discussed in Stieng and Muskulus (2020); Cousin (2021),
the problem then becomes a double loop very expensive to solve, inner loop for the reliability
and outer loop for the design optimisation. Several approaches are proposed to avoid it, the
more known being the sequential optimization and reliability analysis (SORA) method of Du
and Chen (2004) decoupling the two loops into a sequence of deterministic optimization and
reliability analysis, and the Single Loop Approach (SLA) reformulation Chen et al. (1997),
both assuming linearity of the limit state (FORM). In Cousin (2021), for the fatigue of
mooring lines of a Floating OWT constrained by maxima on the floater kinematics, a
reformulation using Extreme Value Theory and an adaptive kriging in the LT parameter
space is shown to converge efficiently. Alternately, Stieng and Muskulus (2020) assumes an
uncoupling between a design-dependent deterministic part of the limit state and a design-
independent reliable part to obtain a computationally feasible procedure. RBDO was out
of the scope of HIPERWIND project. Nevertheless, we present in section 6 an interesting
simplified approach to get a new design, with saved material and reduced conservatism, for
the OWT case study supported on a monopile which is based on Teesside wind farm of EDF
in UK for which ULS drove the design of the monopile. The failure probability associated to
the critical limit state (von Mises stress at mudline) is computed with the GP with sequential
sampling approach. The feasibility of the same approach is also demonstrated for a second

5



HIPERWIND 2 INTRODUCTION

case study with a floating OWT for the IEA15MW turbine on UMaine semi-submersible
floater in South Brittany site.

To enforce further the validation of these feasible estimate of failure probability, one may
consider its robustness with regard to the confidence on the multiple source of uncertainties
which have been selected. Indeed, a weakly justified probabilistic distribution may induce
significant approximation in the reliability evaluation of a design. Among these sources,
one may first consider the one on wind and wave conditions at the beginning of the OWT
modeling chain. It was shown during WP2 of HIPERWIND, that significant uncertainty on
the tail of the probabilistic distribution of wind and wave LT parameters could occur due to
the arbitrary choice of the statistic model Vanem et al. (2023). To study the consequence,
one may desire to perform a global sensitivity analysis. In Robertson et al. (2019), a
simple screening with Elementary Effect approach (see details in the reference) was used
to avoid unfeasible computational cost of usual sensitivity approaches like the Sobol indices
one requiring MC sampling. More recently, Shittu et al. (2022) presented a Stochastics
Sensitivity Analysis employing a quadratic interpolation of the limit states in the parameter
space. As discussed in Robertson et al. (2019)’s introduction, this could however lead to
significant approximation for ULS reliability. In section 8, we chose to replace the sensitivity
information by a simpler robustness one. The uncertainty on wind and wave LT parameter
distributions was propagated to the failure probability of Teesside case study, by exploiting
the results of the ULS GP with sequential sampling.
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3 Probabilistic ULS formulation for OWT design
Let us first recall that, as already discussed in section 2, we neglect in the present work
possible heterogeneity both on the loading (e.g. wake influence for operational turbine ULS,
varying water depth) and on the resistance of OWT components (e.g. different turbines or
foundation configurations) within a wind farm. Hence, we will consider directly the case
of a single representative OWT which is submitted to extreme ambient wind conditions
encompassing the conditions seen by all turbines of the wind farm.

As usual in offshore engineering, we assume a timescale separation in the energy spectral
density of stochastic processes representing the wind speed at hub height and the wave
elevation. This assumption enables to distinguish ST variation of these processes on a
duration ∆T and LT variation over the service life or annual quantities for what concerns
ULS in IEC (2019b); DNV (2021) standard. The ULS failure probability of a component
of an OWT over ∆T can then be written as follows:

pf = Pζ,η(.,ξ),ν(.,ξ)

(
max
[0,∆T ]

s (t; ζ, η(., ξ), ν(., ξ)) > ρ

)
(3.1)

where:
• ∆T is set to ten minutes for the fixed-case or one hour for the floating case study;
• ζ is a random vector representing the model uncertain parameters;
• ξ is a random vector composed of not independent random variables representing the

uncertainties on the LT environmental parameters. These parameters correspond to
the wind and wave statistics over [0,∆T ];

• t → η(t, ξ) and t → ν(t, ξ) represent respectively the ST sea elevation and wind
velocity. They are both a time-dependent random process parameterized by ξ;

• s is the quantity of interest. It is a time-dependent output of a numerical simulator
such at the stress as some location of the structure for example;

• ρ is a given resistance threshold.
The values of ∆T are assumed to be long enough to get stationary conditions for the

case of stationary events.
It is to be noticed that despite pf is a failure probability over ∆T , both the LT and ST

uncertainties are considered in the failure probability.
Considering that a year is composed of N independent periods of duration ∆T , the

annual failure probability pyear
f can be computed from (3.1) as1:

pyear
f = 1 − (1 − pf )N (3.2)

where N is the number of intervals of duration ∆t over one year. For ∆T = 10 minutes,
N = 52596 and for ∆t = 1 hour, N = 8766.

In this report, four cases are introduced for which a ULS failure probability that can
be written as equation (3.1) need to be estimated. For each case, the properties and the

1Denoting Ai the event ”the QoI exceeds the threshold ρ over the i-th interval of length ∆T”, we have
pyear

f = P
(
∪N

i=1Ai

)
= 1 − P

(
∩N

i=1Ac
i

)
= 1 −

∏N
i=1 P (Ac

i ) = 1 −
∏N

i=1 (1 − P (Ai)) = 1 − (1 − pf )N ,
where Ac

i is the complement event of Ai and pf is the failure probability over ∆T .
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physical meanings of ∆T , ζ, ξ, η, ν, s and ρ vary. Thus, a description of the objects is
given at the beginning of the section introducing each case.

The estimation of pf is a challenging task since a naive approach would require to sample
many realizations of the different sources of uncertainty and to perform as many costly
simulation. The smaller pf is, the greater the number of simulations, since the probability
must be estimated accurately. Different strategies are introduced in this deliverable to
compute pf efficiently depending on the ST processes being stationary or not.

Finally, we introduce the random variable Y defined by:

Y = max
[0,∆T ]

s (t; ζ, η(., ξ), ν(., ξ)) (3.3)

which depends on the LT and ST uncertainties.
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4 Methodologies for stationary ULS
In this section, we use a simplified benchmark 2D study (in wind speed mean and standard
deviation space) to compare four ULS reliable methods dedicated to the case of stationary
events: environmental contours, GP with sequential sampling, BNN and outcrossing opti-
mization in joint ST-LT space. The simplification also concerns for all methods the use of
a surrogate replacing the OWT multiphysics simulator to lighten the computational cost.
The final objective of this section is to select the more appropriate method in terms of
accuracy and associated computational cost to apply it on the complete fixed foundation
(section 6) and floating (section 7) OWT case studies. The stationarity concerns the ST
wind speed process and the wave elevation process for given fixed LT parameters which are
respectively denoted η and ν in 3.1.

4.1 Description of the methods
4.1.1 Environmental Contours

The environmental contours approach is a well established method, that is recommended
in DNV’s recommended practice (DNV, 2021). Different variants of this method exist
(Haver and Winterstein, 2009; Huseby et al., 2013; Leira, 2008; Silva-González et al.,
2013; Montes-Iturrizaga and Heredia-Zavoni, 2015; Li et al., 2016; Lutes and Winterstein,
2016; Haselsteiner et al., 2017; Chai and Leira, 2018; Manuel et al., 2018; Ross et al.,
2019; Haselsteiner et al., 2021), and several applications of this approach are reported in
the literature, especially ocean engineering applications (Niedzwwecki et al., 1998; G.S.
and Moan, 2001; Baarholm et al., 2010; Muliawan et al., 2013; Vanem, 2018), but also for
offshore wind (Velarde et al., 2019), earthquake engineering (van de Lindt and Niedzwecki,
2000) and bridge design (Giske et al., 2018; Castellon et al., 2022).

This approach does not aim directly to estimate a probability of failure as defined in
equation (3.1) but to find the sets of LT parameters (denoted ξ in equation (3.1)) with a
given return period. The ST uncertainty is introduced by considering a sample with different
random seeds for wind and wave processes, taking high quantiles to be conservative. This
information can then be used to estimate the distribution of Y (i.e. the maxima of the
quantity of interest) defined in equation (3.3).

4.1.2 Bayesian Neural Network

Surrogate modelling is a popular approach for simplifying an analysis by mapping the out-
puts of a complex model or a physical system with simple, computationally efficient, and
analytical functions. The simplification comes at the expense of introducing an additional
uncertainty in terms of 1) model uncertainty (since the surrogate model is not a perfect
mapping of the actual model), and 2) statistical uncertainty, as the finite sample size used
for model training means the variable space is not explored fully.

Typical surrogate modelling approaches employ Machine Learning (ML) or other model
fitting procedures. While the majority of ML techniques provide deterministic models, in
the present work we are particularly interested in models that capture uncertainty and
possibly provide probabilistic outputs (the so-called stochastic simulators). One of the
primary models of choice is the Bayesian Neural Network (BNN) Blundell et al. (2015),

9



HIPERWIND 4 METHODOLOGIES FOR STATIONARY ULS

which is a probabilistic adaptation of the commonly used Feedforward Neural Networks
(FNNs, Goodfellow et al. (2016)). BNNs introduce variational layers, where the weights
and biases are probabilistic, represented by their joint distribution (means and variances)
rather than a single deterministic value. As the name suggests, BNNs use Bayesian inference
to calibrate the probabilistic parameters. The classical Bayesian inference approach Tiao
and Box (1992) involves determining the most likely posterior joint distribution of the
parameters, typically including the full covariance matrix for all parameters. This is well
suited for calibrating a model with a few parameters, but it would fail for the case of Neural
Networks due to the very large number of parameters in the network. Therefore, BNNs
apply a crucial simplification by assuming that a set of suitable model parameters can be
found that are sufficiently uncorrelated so that their joint distribution can be represented
by their mean values and a diagonal covariance matrix. This assumption can be applied to
the cross-correlations of parameters within a single layer of the BNN. The assumption may
be justified by the fact that Neural Network parameters have no physical meaning and are
randomly initialized. Dependencies between parameter distributions in different layers can
be estimated through chain differentiation as with regular neural networks Blundell et al.
(2015). Therefore, inferring the main diagonal of the covariance matrix along with the
parameter means is sufficient. Subsequently, the total number of parameters to be inferred
in a BNN is not more than two times larger than in a regular FNN. BNNs can be tailored to
represent epistemic (model) uncertainty, as well as aleatoric uncertainty caused by variations
in the data that are not explained by any of the input variables. The probabilistic parameters
in the variational layers are a representation of model uncertainty. Further, the output layer
of a BNN can be chosen to return output distribution parameters rather than a single
value. With this setup, the outputs have a probability distribution whose expected value
is conditional on the input variables, while the variance is a representation of the aleatory
uncertainty. Figure 4.1 illustrates how different BNN setups affect its behavior.

Running a single model prediction with a BNN will result in a realization with scatter
similar to the actual dataset, as illustrated in Figure 4.2.

The BNN method can thus be used to predict the distribution of Y defined in equation
(3.3) given a set of LT parameters. If this prediction is accurate, the failure probability of
equation (3.1) becomes fast to evaluate since the BNN can replace the costly simulator.

4.1.3 GP and sequential sampling

We denote X = (ξ, ζ) the random vector grouping the LT and the model uncertainties and
is described by joint probability distribution fX(x). Given a realization x of this random
vector, the maxima of the quantity of interest (load on the OWT component) denoted Y
in section 3 is a random variable with an (unknown) probability density function gY |X(y|x)
and whose uncertainty comes from the random wind and wave processes. The distribution
of Y can then in principle be found with:

gY (y) =
∫
gy|X(y|x)fX(x)dx. (4.1)

In the present case, the distribution gy|X(y|x) is not known, but samples from gY |X(y|x)
can be obtained by running simulations of the structural response. In principle, the integral
4.1 can then be estimated through a brute-force MC approach. However, this is still a
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computational demanding task, and may in many cases be impossible if simulating the
structural response is computational demanding.

In the following, we present the ULS methodology GP regression and sequential sampling
described in Gramstad et al. (2020), see also Mohamad and Sapsis (2018) to estimate the
integral 4.1. The main steps in the methodology can be summarized as follows:

1. Introduce a parametric distribution ĝY |X(y|x,θ(x)) for the ST response (i.e. ĝY |X(y|θ(x))
represents an approximation of the ”true” distribution gY |X(y|x)).

2. A GP regression model is used to represent the distribution parameters θ(x), which
are fitted based on a limited number of ST response simulations.

3. The estimated LT response distribution is obtained from 4.1 by replacing gY |X(y|x)
with ĝY |X(y|θ(x)).

Parametric model for the ST response In the present work two different models
ĝY |X(y|θ(x)) for the ST response have been considered: the Gumbel-distribution and
the generalized extreme value (GEV) distribution. See also Dimitrov (2016) for a detailed
comparison of several asymptotic load techniques including other choices of distribution and
strategies for de-clustering of local maxima. The Gumbel distribution has two parameters
θ = (α, β) location and scale, and the GEV distribution has three parameters θ = (α, β, γ)
location, scale and shape.

From nseeds random response simulations for a given input x, the best fit distribution
parameters θ(x) are found as the maximum likelihood estimate (MLE) for the given ob-
servations y = (y1, ..., ynseeds

). An important part of the present methodology is to include
the uncertainty in the distribution parameters throughout the analysis. This is achieved by
considering the likelihood of the distribution parameters under the given observations, i.e.
p(y|θ).

In order to incorporate this uncertainty into the GP-model, the Gumbel and GEV like-
lihoods are approximated by 2- and 3-dimensional Gaussian likelihoods, respectively. The
best-fit Gaussian likelihood is found by drawing samples from the distribution proportional
to p(y|θ) using Markov Chain Monte-Carlo (MCMC). From the MCMC-samples, the means
and covariance matrix of the distribution parameters are estimated. The set of MCMC sam-
ples are increased in batches until three consecutive estimates of the means and covariances
are within 1% of each other. This procedure is illustrated in Figure 4.3, for different num-
ber of data (nseeds ST simulations) used to fit the distributions. The upper row of Figure
4.3 shows the ”true” likelihood of the Gumbel-parameters under the observed data, the
corresponding MCMC-samples, and the resulting best-fit Gaussian likelihoods. The second
row shows the corresponding Gumbel-distributions, with 95% confidence intervals for the
”true” and fitted Gaussian likelihoods. As expected, the uncertainty in the distribution
parameters decrease with more data. So does the consistency of the Gaussian fit, which
becomes much better for larger needs.

GP-model for distribution parameters The fitted Gaussian likelihood for the distribu-
tion parameters (i.e. the mean vector and covariance matrix) is then used to fit a GP model.
In the following we consider the general case that the GP have m-dimensional output (i.e.
models m distribution parameters θ = (θ(1), ...,θ(m)) ∈ Rm) and d-dimensional input (i.e.
is a function of x ∈ Rd). In the present case m = 2 or m = 3 for the Gumbel and GEV
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distributions, respectively.
That is, we consider a GP given as a prior over functions θ : Rd → Rm:

θ(x) ≈ GP (µ(x), K(x,x)), (4.2)

where the prior mean µ(x) = [µ1(x), ..., µm(x)]T is here assumed zero, and where K is
the diagonal matrix:

K(x,x) =


K1(x,x′) 0 0

0 ... 0
0 0 Km(x,x′)

 (4.3)

where each Kj here is of the Matérn 3/2 type as in Gramstad et al. (2020). Given
some training data, i.e. observed distribution parameters θ̃j = (θ̃(1)

j , ..., θ̃
(m)
j ) for points

xj : D = (xj, θ̃j)
N

j=1 one can derive the posterior predictive distribution for ”new” points
under the observed training data. As described in section 4.2.2 the distribution parameters
are assumed to come with Gaussian noise, so that θ̃j = θ(xj) + N(0,Σj), where Σj is
the covariance matrix of each set of the m distribution parameters, as estimated using the
procedure described in section 4.1.3.

Simulation of response from GP-model Given the GP-model that enables drawing
random samples of the distribution parameters for any LT parameter x, a ”full” MC estimate
of the response distribution is obtained. First, distribution parameters θj are sampled from
the GP-model for each LT condition xj, j = 1, ..., 10000 × 365.25 × 24 × 6 in the 10
000-year LT simulation. Then, for each θj a ST response yj is sampled from the Gumbel-
or GEV distribution gY |X(y|θj). From the 10 000 years of responses, the relevant return
values are estimated.

Sequential update of the GP-model As described in Gramstad et al. (2020), a se-
quential update of the GP-model is applied, where a new point xnew for which to run new
ST response simulations is selected based on a trade-off between increasing accuracy in the
areas of the LT input space that contributes to the extreme response (here responses above
the estimated 100-year level) and areas where the uncertainty is large. More specifically,
the following acquisition function is applied

xnew = arg maxxfs(x)
∣∣∣σθ(x)

∣∣∣ , (4.4)

where σθ(x) = (σ1(x), ..., σm(x)) are the standard deviations of each of the distribution
parameters as function of the LT variables x, and fs(x) is the probability density func-
tion of responses above the 100-year return value, which is estimated using kernel density
estimation.

This approach is illustrated in 4.4, which shows the acquisition function 4.4 used to
select the new point to add to the GP-model.

Return period or failure probability estimation Once the GP model has been built,
it can be used either to estimate the distribution of Y given a set of parameters x, or to
estimate a probability of failure by following the principles below.

12
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The failure probability pf defined in equation (3.1) can by written as

pf = EX,ρ

[
PY |X=x (Y > ρ)

]
(4.5)

where
PY |X=x (Y > ρ) = 1 − PY |X=x (Y < ρ) = 1 −GY |x(ρ) (4.6)

with GY |x(ρ) the cumulative distribution function of Y |X = x. We thus have:

pf = EX

[∫
Ωρ

(
1 −GY |x(ρ)

)
fρ(ρ)dρ

]
(4.7)

with fρ the pdf of the resistance ρ. The GP model provides the parameters of the CDF
GY |x(ρ). Therefore the integral in equation 4.7 involves analytical functions and can be
estimated with a simple 1D numerical integration.

4.1.4 Outcrossing approach in the joint ST-LT space

Mathematical formulation. In the following to alleviate notation, except the uncertain
variables associated to the wind, all other variables associated to environmental conditions
will be fixed. In this context, our goal is the estimation of the following failure probability

pyear
f = P−→

ξ ,ν−→
ξ

(
max

[0,nT ×∆T ]
s
(
t; ν−→

ξ

)
> ρ

)
(4.8)

where
• nT is the number of slices of ∆T = 10 minutes in [0, T ] (T = 60×10×nT seconds);
• −→

ξ = {ξi, i ∈ {1, . . . , nT }} is a set of i.i.d. random vectors according to a reference
random vector ξ. For each i, ξi gathers the LT environmental parameters defining
the wind statistics over the i-th ∆T = 10 minutes interval.;

• ν (.; ξi) represents the ST wind velocity. It is a 10min-stationary GP whose spectral
density is parameterized by ξi;

• νξ = {ν (.; ξi)}i=1,...,nT
represents a random vector gathering the wind loads;

• ρ is the material resistance threshold;
The function s is the computationally costly output of a multi-physics (aero-hydro-servo-
elastic) wind turbine simulator defined as:

s
(
t; νξ

)
=

nT∑
i=1

s(t; νξi
(t))1Ii

(t). (4.9)

where
• s(.; νξ(.)) is a piecewise supposed stationary random process representing the quantity

of interest, output of a numerical simulator (Deeplines WindT M , DIEGO, HAWC2);
• Ii = [(i− 1)∆T, i∆T ] with ∆T = 10 min ;
• νξi

(t) =
(
ν ([0, t]; ξi)

)
represents the wind velocity in a [0, t] time interval.

• For fixed values of ξi, s(.; νξi
(.)) is a 10 min-stationary random process ;

The statistical nature of ρ, ξ, ν (.; ξi) is described in section 4.2.1.
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From time-dependent-reliability to standard reliability with the outcrossing ap-
proach. In the following only the LT and ST 3D wind parameters will be considered. The
main formulation of the studied reliability problem involves the maximum of a piecewise
stationary random process. We shall for a moment note S(t), instead of s

(
t; νξ

)
, the out-

put random process to alleviate notations. Let us consider S as a random process verifying
appropriate smoothness hypothesis, for instance presented in Azäis and Wschebor (2009),
such that the random one-dimensional Kac’s counting formula defines the outcrossing (up-
crossing) number as

N(ρ, T ) = lim
δ→0

1
2δ

∫
[0,T ]

S ′+(t)1{|S(t)−ρ|<δ}(t)dt (4.10)

=
∫

[0,T ]
S ′+(t)δS(t)=ρdt (4.11)

where the prime superscript denotes the time derivative of the function, S ′+(t) = sup(0, S ′(t)),
δ stand for the Dirac function and 1 for the indicator function. The random instantaneous
outcrossing, also named outcrossing rate, is defined as

Nρ(t) = S ′+(t)δS(t)=ρ. (4.12)

The outcrossing rate mean is therefore given by

E[Nρ(t)] =
∫
R
s′p(ρ, s′; t)ds′ (4.13)

where p(., .; t) stands for the joint probability distribution of the random vector (S(t), S ′+(t)).
Another formulation, derived in the PHI2 approach, used for instance in Andrieu-Renaud
et al. (2004) is given, under appropriate assumptions, by swapping integrals and limits in
equation (4.10) and using the fact that for a realization of (S(t), S ′+(t))

lim
δ→0

s′+(t)1{|s(t)−ρ|≤δ}(t)
2δ = lim

∆t→0

1{s(t−∆t)≤ρ}(t)1{s(t+∆t)>ρ}(t)
2∆t .

Then the Andrieu-Renaud et al. (2004) formulation of the mean outcrossing rate boils down
to

E[Nρ(t)] = lim
∆t→0

P
(
S(t− ∆t) ≤ ρ, S(t+ ∆t) > ρ

)
2∆t (4.14)

and the mean outcrossing number to

E[N(ρ, T )] =
∫

[0,T ]
E[Nρ(t)]dt. (4.15)

We can now come back to our setting. In our context, the piecewise continuous pro-
cess S does not fulfill the required hypothesis on the full interval [0, T ] but only on the
stationarity intervals of size ∆T = 10min. However, by conditioning on ξ, using a simple
complementary set argument and the i.i.d hypothesis on the ST processes νξi

conditional
to the ξis, the failure probability over a year (4.8) can be written, similarly to (3.2), as

pyear
f = 1 − Eξ

[(
1 − pf (ξ)

)nT
]

(4.16)
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with
pf (ξ) = Pνξ

(
max
[0,∆T ]

s
(
t; νξ

)
> ρ|ξ

)
. (4.17)

For all t let us denote s(t) = s
(
t; νξ

)
the process s conditioned on ξ and the outcrossing

number on the interval [0,∆T ] by N(ρ,∆T ) given by (4.15) with the integral taken on the
interval [0,∆T ] with integrant s. To alleviate notation, in the sequel we will not explicitly
write the conditioning w.r.t. ξ in the probabilities. With the introduced notation, we
moreover have

pf (ξ) = Pνξ

(
s(0) > ρ

)
+ Pνξ

(
N(ρ,∆T ) ≥ 1, s(0) ≤ ρ

)
.

For some values of the LT parameters the probability Pνξ

(
s(0) > ρ

)
will clearly be

negligible. In this latter case

pf (ξ) = Pνξ

(
N(ρ,∆T ) ≥ 1

)
. (4.18)

Applying first the Markov inequality and then the stationarity hypothesis to (4.18)

pf (ξ) ≤ Eνξ

(
N(ρ,∆T )

)
=
∫

[0,∆T ]
Eνξ

(
Nρ(t)

)
dt

= ∆TEνξ

(
Nρ(ts)

)
.

We can now use this bound within the expression (4.17) along with the i.i.d hypothesis of
the LT parameters ξ which leads to

pyear
f ≤ Eξ

[
1 −

(
1 − ∆TEνξ

(
Nρ(ts)

))nT
]

= TN̄ −O
((
TN̄

)2
)

(4.19)

with
N̄ = Eξ

[
Eνξ

(
Nρ(ts)

)]
. (4.20)

Another approximation can be obtained under mixing hypothesis on the random process
S leading, on a stationarity interval, to the independence of its peaks and therefore a
Poisson approximation of the associated outcrossing number such that using the stationarity
hypothesis and for instance the Law of Large Numbers (LLN) we get

pyear
f ≈ 1 − Eξ

(
e−TEνξ

[Nρ(ts)]
)
. (4.21)

We can notice that, on the LT scale, the hypothesis of independent peaks seems more
relevant than in a short stationarity interval. But in the LT, because of the discontinuities,
the outcrossing approach requires particular definitions and analysis. Nevertheless this
should ends up with non-homogenous Poisson approximation and, with the i.i.d assumption
on the ξis, to identical approximations unless failure at the initial time of each interval
cannot be neglected.
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Finally using Jensen inequality, switching the expectation Eξ with the exponential in (4.21),
we end-up with

pyear
f ≤ 1 − e−T N̄ . (4.22)

Notice that both (4.19) and (4.22) are equivalent when the quantity TN̄ is very small.

Following the work of Schall et al. (1991), Perdrizet and Averbuch (2011) proposed to
use (4.21) in the general setting (4.8) and involved in addition a ρ uncertain parameter.
After the same developments, they proposed to not apply Jensen approximation with respect
to ρ leading to

pyear
f ≤ 1 − Eρ

[
e−T N̄(ρ)

]
. (4.23)

In our context, the main problem sums up to the estimation of the quantity N̄ defined
in (4.20), with fixed ρ, as

N̄ = Eξ

[
P+

ρ (ts; ξ)
]

with

P+
ρ (ts; ξ) := Eνξ

(
Nρ(ts)

)
= lim

∆t→0

P
(
S(ts − ∆t; νξ) ≤ ρ, S(ts; νξ) > ρ

)
∆t . (4.24)

We can further notice that at this stage the time dependent reliability problem has been
reformulated into a time-independent one thanks to the stationary assumption.

We will now on consider the LT parameter fixed and simplify notation such that νξ

defined on the 10-minutes interval will just be denoted ν and P+
ρ (ts; ξ) simply P+(ts)

when ξ is fixed. We can also notice that for a chosen small enough value of ∆t, we wish
to estimate the numerator in the limit term which can be reformulated as P

(
h(ν) < 0)

with h(ν) = max
(
S(ts − ∆t; ν) − ρ,−S(ts; ν) + ρ

)
. Using the Karuhnen-Loève (KL)

representation of the ST wind coupling (4.30) with (4.28) such that ν is fully characterized
by the set of random vector αKL denoted to alleviate notation α, the estimation of P+(ts)
boils down to estimating the probability

P
(
h(α) < 0) = Eq[1h(α)<0] (4.25)

where q is the probability density of the high dimensional (MKL = 168) random vector α.
Since we assume that {h(α) ≤ 0} is a rare event (i.e., P+(ts) ≤ 10−4), performing standard
MC simulation can be prohibitively expensive i.e. we require a large number (∝ 102P+(ts))
of i.i.d. samples αi ∼ q for an accurate estimation of P+(ts).

In our setting the input distribution is a standard Gaussian α ∼ N (0, ID). In the case
of non-Gaussian distributions, iso-probabilistic transformation are commonly used prior per-
forming rare event probability estimation via Rosenblatt or Nataf transformations (Rosen-
blatt, 1952; Nataf, 1962; Lebrun and Dutfoy, 2009a,b)).

4.2 Benchmark on a simplified 2D case study
4.2.1 2D Benchmark Case Study

Response calculations for different environmental conditions are performed with Hipersim
(https://gitlab.windenergy.dtu.dk/HiperSim/hipersim), used to generate turbulence wind
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box, and a mNARX surrogate model based on the combination of dimension reduction and
auto-regressive modelling developed by ETH Zürich (Schär et al., 2023). This model is
described in HIPERWIND deliverable D4.1 (Dimitrov et al., 2022), and has been trained
from OpenFAST (NREL, 2021) simulations of the NREL (National Renewable Energy Lab-
oratory) 5MW reference wind turbine (Jonkman et al., 2009). It takes a wind box as
input and returns the corresponding maximum flapwise blade root bending moment MBld

y .
Two case studies are considered, with offshore wind turbines at two different locations, i.e.
Teesside and South of Brittany. For both cases, joint statistical models for the relevant
input variables were taken as given, as described in (Kelly and Vanem, 2022; Vanem et al.,
2023). Note, however, that the statistical models were initially fitted to higher-dimensional
data, but only mean wind speed and turbulence are considered in this study. The fit-
ted omni-directional joint distribution at Teesside, not documented in previous references
for confidentiality reasons, is considered for the 2-dimensional exercise with the following
parameters:

• Mean wind speed (U): 10-minute average horizontal wind speed at hub height (83
m).

• Turbulence (σU): the temporal standard deviation of the wind speed at hub height.
This has been fitted based on measurements over a period of four years. The fitted

omni-directional joint distribution at South Brittany (Vanem et al., 2023) is considered for
the 2-dimensional exercise with the following parameters:

• Mean wind speed (U): 1-hour average horizontal wind speed at hub height (150m).
This is obtained by down-sampling 10-minute average horizontal wind speed to match
the hourly wave conditions for the full joint distribution model.

• Turbulence (σU): the temporal standard deviation of the wind speed at hub height
for same duration than U .

This distribution is fitted to hindcast data from the ANEMOC (Digital Atlas of Ocean
and Coastal Sea States) database2, covering 32 years of data from the years 1979 to
2010. It should be noted that these data do not include the turbulence variable, σU ,
and therefore a conditional distribution for turbulence, conditioned on mean wind speed,
was established based on the normal turbulence model described in (IEC, 2019a), i.e., a
conditional lognormal distribution as also outlined in (Vanem et al., 2023). It should be
noted that the ETH response model has been trained on the NREL 5MW turbine whose
hub is at 90m, and the mean wind speed U is not translated to the hub height 90m in this
exercise. Hence, the actual response estimates cannot be used directly, but this is deemed
appropriate for a comparison exercise, as long as the same wind input is used in all cases
that are to be compared. The response model is only applicable between the cut-in speed
(3m/s) and cut-out speed (25m/s), so sets of random variables with mean wind speed
U below cut-in wind speed or above cut-out wind speed were discarded. However, these
conditions are not assumed to contribute to the LT extreme responses for these turbines,
so this is deemed reasonable.

In the following, extreme maximum flapwise root bending moment corresponding to a
return period of 50 years will be computed using both environmental contours and a se-
quential sampling approach for the two case studies. The two approaches assumes the same

2URL: http://anemoc.cetmef.developpement-durable.gouv.fr/
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statistical distribution for the wind variables, and the same models for the response calcula-
tions, as outlined above. However, one critical assumption is implicit in the environmental
contours approach. Indeed, this approach assumed that the largest responses occur in the
most severe environmental conditions. In other words, it assumes that the effect of the LT
variability of the wind conditions is more important for the extreme response than the ST
variability of the response condition on wind conditions. This need not be assumed with the
sequential sampling approach, and this study will shed some light on the appropriateness
of this assumption for the offshore wind response cases.

4.2.2 2D results with Environmental Contours

Teesside To estimate the extreme response of the wind turbine at Teesside, the 2-
dimensional environmental contour method based on DS (direct sampling) (Huseby et al.,
2013, 2015) and IFORM (inverse first-order reliability method) (Winterstein et al., 1993;
Haver and Winterstein, 2009) is considered. The predefined surrogate model of deliverable
D4.1 Dimitrov et al. (2022) is used to calculate the ST extreme response (i.e. maximum
flapwise blade root bending moment MBld

y ). Environmental contours corresponding to n-
year extreme of 10-minute conditions are calculated, i.e. corresponding to an exceedance
probability of

Pe = 1
365.25 × 24 × 6 × n

(4.26)

For 50-year return period n = 50 and Pe = 3.8E−07. The DS and IFORM environmental
contours based on the fitted omni-directional joint distribution at Teesside are shown in 4.5
for 1-year and 50-year return periods. One immediate observation is that the contours from
the different contouring methods are quite similar, with only slight difference for both the
1-year and 50-year extreme conditions. The points on the 50-year return period contours
are taken as input for the surrogate model (mNARX). There are 68 input points from
the 50-year DS-contour, and 40 input points from the 50-year IFORM-contour. In total
1000 seeds are run with mNARX (10-minute simulation) for each input point on both the
DS-contour and IFORM-contour. However, points corresponding to wind conditions below
the cut-in wind speed (3m/s) and above the cut-out wind speed (25m/s) are disregarded.
The response model is not applicable for these conditions, and it is tacitly assumed that
these conditions will not contribute to the LT extreme response. Hence, for wind conditions
outside the operational range of the wind turbine, the response is simply set to a zero. It is
noted that the mNARX model sometimes gives NaN (not a number) for certain seeds for
some wind conditions. This is most likely due to negative or extremely high instantaneous
winds speeds since this model is not trained neither at negative wind speed nor at extremely
high wind speeds. This could occur for example for a combination of high mean wind speed
and high turbulence, remembering that the turbulence wind generator used (Turbgen of
HIPERSIM Dimitrov (2023)) create a realization of a 3D Gaussian process. In such cases,
another seed is simply selected to avoid that mNARX gives NaN. The LT extreme responses
of maximum flapwise blade root bending moment (50% fractile, 90% fractile, 99% fractile
of the ST distributions) are taken out from 1000 seeds based on 50-year DS and IFORM
contours, respectively. That is, for each wind condition along the contours, N = 1000
response simulations are performed, and the distribution of maximum responses from these
1000 simulations are used to extract the quantiles of interest. According to (DNV, 2021),
the choice of quantile is highly case-dependent, and there are no definitive recommendations
on which quantile to use. Hence, results for three different quantiles are reported. The
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results are listed in 4.1. It appears that the LT extreme estimations of flapwise blade root
bending moment are comparable for the two contour methods when considering the 50%
fractile, i.e., 20.59 MNm using the DS contours and 20.40 MNm from the IFORM cotours,
with similar combination of mean wind speed (U) and turbulence (σU). The results are also
close for the 90% fractile based on these two approaches, i.e., 25.85 MNm from the DS
approach and 25.17 MNm from the IFORM with similar combination of mean wind speed
and turbulence. As for the results from 99% fractile, even though the extreme responses
do not differ too much, i.e., 34.01 MNm from the DS approach and 34.96 MNm from
IFORM, the combination of mean wind speed and turbulence is quite different, i.e., the
mean wind speed leading to the extreme response according to the DS approach is 22.74
m/s and the corresponding turbulence is 5.17 m/s while the mean wind speed leading to
the extreme response for IFORM is 13.14 m/s and the corresponding turbulence is 5.30
m/s. According to DNV-RP-C205 (DNV, 2021), extreme values in a random process are
random variables with a statistical variability. Generally the relevant factor and fractile will
be larger for strongly nonlinear problems, and an appropriate high fractile should be chosen
for the characteristic LT response. The appropriate fractile level is case-specific, and a
fractile in the order of 85% to 95% will often be a reasonable choice for use in design. In
this exercise, the results from the contour method will later be compared with results from
brute force simulations in order to consider which quantile levels are most appropriate.

Direct sampling

U [m/s] σU [m/s] MBld
y [MNm]

12.66 5.33 20.59 (50% fractile)
14.56 5.36 25.85 (90% fractile)
22.74 5.17 34.01 (99% fractile)

IFORM
U [m/s] σU [m/s] MBld

y [MNm]
13.14 5.30 20.40 (50% fractile)
14.51 5.30 25.17 (90% fractile)
13.14 5.30 34.96 (99% fractile)

Table 4.1: Long-term extreme responses of flapwise blade root bending moment MBld
y

[MNm] with estimated 50-year return period based on DS and IFORM, respectively.
Teesside case.

Figures 4.6 to 4.8 show the 50-year DS-contour and the corresponding LT extreme
response of the maximum flapwise blade root bending moment by using 50% fractile, 90%
fractile and 99% fractile of the ST extreme response distributions, respectively. The rainbow
color denotes the range of the maximum value and the blue cross denotes the combination
of the wind speed and turbulence leading to the maximum flapwise blade root bending
moment on the 50-year DS-contour.

Figures 4.9 to 4.11 show the 50-year IFORM-contour and the corresponding estimated
LT extreme response of the maximum flapwise blade root bending moment by using 50%
fractile, 90% fractile and 99% fractile, respectively, of the ST maximum response distri-
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bution. The rainbow color denotes the range of the maximum value, and the blue cross
denotes the combination of the wind speed and turbulence leading to the maximum flapwise
blade root bending moment on the 50-year IFORM-contour. It is observed that for both
contour methods, the response tend to be largest for relatively moderate mean wind speeds
around 12 - 15 m/s, but that it tends to grow with turbulence and gets its largest values
for the highest values of turbulence.

South Brittany To estimate the extreme response of the wind turbine at South Brit-
tany, 2-dimensional environmental contours based on IFORM (inverse first-order reliability
method) is considered for the mean wind speed and turbulence variables. The predefined
surrogate model of deliverable D4.1 Dimitrov et al. (2022) is used to calculate the ST ex-
treme response (i.e. maximum flapwise blade root bending moment MBld

y ) in selected wind
conditions. Environmental contours corresponding to n-year extreme of 1-hour conditions
are calculated, i.e. corresponding to an exceedance probability of:

Pe = 1
365.25 × 24 × n

(4.27)

For 1- and 50-year return period (n = 1, 50), Pe = 1.14E − 04 and 2.28E − 06,
respectively. The IFORM environmental contours based on the fitted omnidirectional joint
distribution at South Brittany are shown in 4.12 for 1- and 50-year return periods. The
points along the 1- and 50-year IFORM contours are taken as input for the surrogate
model (mNARX). There are 94 input points from the 1-year IFORM-contour, and 74 input
points from the 50-year IFORMcontour. In total 100 seeds are run with mNARX (1-hour
simulation) for each input point on the IFORM-contours. The LT extreme responses of
maximum flapwise blade root bending moment (50%, 90% and 99% fractiles) are taken
out from 100 seeds based on 1- and 50-year IFORM contours, respectively. The results are
listed in 4.2. Note that the 99% fractile should be used with caution since these results
are based on only 100 seeds and the 99% fractile estimate is therefore not very reliable.
Notwithstanding, the results are included in the table, and the estimates corresponding to
the 90% fractile are presented in bold, since this seems to be the most reasonable choice.

The LT extreme estimations of flapwise blade root bending moment from the 50-year
contour is slightly higher than the LT extreme estimations of flapwise blade root bending
moment from the 1-year contour, assuming the 99% fractile, i.e., 15.87 MNm from 1-year
contour and 16.54 MNm from 50-year contour with similar combination of mean wind speed
and turbulence. Figures 4.13 and 4.14 show the 1- and 50-year IFORM-contour and the
corresponding LT extreme response of the maximum flapwise blade root bending moment
by using 99% fractile, respectively. The rainbow color denotes the range of the maximum
value, and the blue cross denotes the combination of the wind speed and turbulence leading
to the maximum flapwise blade root bending moment on the IFORM-contour.

4.2.3 2D results with BNN

Aeroelastic simulations are relatively time-consuming, which becomes an important chal-
lenge when dealing with large samples such as in reliability problems considering small
probabilities. If a simplified (surrogate) model can effectively replace the aeroelastic sim-
ulations, it will lead to significant savings of computational efforts. A surrogate model
trained by a least-squares or a max-likelihood fit will typically perform well in predicting the
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IFORM - 1year

U [m/s] σU [m/s] MBld
y [MNm] (1-h)

11.11 2.57 14.95 (50% fractile)
11.11 2.57 15.87 (90% fractile)
10.63 2.53 16.88 (99% fractile)

IFORM - 50 year
U [m/s] σU [m/s] MBld

y [MNm] (1-h)
13.31 3.04 15.53 (50% fractile)
12.69 2.99 16.54 (90% fractile)
13.31 3.04 17.54 (99% fractile)

Table 4.2: Long-term extreme responses of flapwise blade root bending moment MBld
y

[MNm] based on 1- and 50-year IFORM contours, respectively. South Brittany case.

main bulk of the dataset. However, its performance in predicting the tails is not guaranteed
as the extreme behavior may follow a different distribution.

In order to test the possibility of replacing the aeroelastic simulations with the BNN
surrogate model discussed briefly in 4.1.2, we tested the performance of the BNN model
in predicting the tails of aeroelastic load distributions. For the purpose, we carried out
a large number of simulations (2 × 106 samples in the 2D input space with mean wind
speed and turbulence as input variables) with the mNARX blade load time series simulator.
The mNARX model is convenient for such a study as it provides time series with strong
similarity to actual aeroelastic simulations, but at a small fraction of the computational cost.
A BNN model (see Section 4.1.2) assuming jointly Gaussian distributed parameters was fit
to 50,000 of the samples. The BNN considered both model uncertainty (variational layers)
and aleatoric uncertainty (output is in terms of distribution parameters). The BNN was
used to predict blade root flapwise moments for all input samples, and the tail distribution
(in terms of exceedance probabilities) was compared to the tail distribution of the simulated
data. The comparison is shown in Figure 4.15. It is clear that the behaviour predicted by
the BNN is heavily dictated by the choice of distribution (Gaussian in this case), while the
blade load tail distribution seems to deviate from a Gaussian distribution. Due to this, we
concluded that our current implementation of BNNs would be helpful when considering the
bulk of the data (such as in e.g. fatigue analysis) but it is not suitable for problems when
the far tail of the data needs to be modelled accurately. Based on some additional tests, we
determined that other implementations with more flexible output distribution assumptions
(such as e.g. a Gamma distribution) could provide better performance but ultimately a
different modelling approach was taken, using sequential sampling.

4.2.4 2D results with GP and sequential sampling

In the following, results from the sequential sampling approach are presented in terms of the
50- and 100-year return values, which in the following are estimated as in the distribution
of the annual maximum response, respectively. The empirical distribution of the annual

21



HIPERWIND 4 METHODOLOGIES FOR STATIONARY ULS

maximum response is, as explained above, estimated from a 10 000-year simulation in each
iteration of the sequential sampling approach. In addition, the failure probability pyear

f ,
defined as the annual probability that the response exceeds 27.112MNm is considered.

Brute-force results In order to have a reference to which to compare the sequential
sampling results, brute-force estimations of the 100-year return value for MBld

y were carried
out, through a direct MC approach. While, the mNARX surrogate model is too computa-
tionally expensive to carry out an intensive sample of the full 10 000-year period, a reliable
estimate could be obtained by excluding LT conditions from which there are none or very
small contribution to the 100-year return value. Two set of brute-force samples were carried
out, applying two different truncations of the LT distribution, as summarized in 4.3. Effec-
tively, the truncation of the LT distribution can be viewed as a simple form of importance
sampling where it is implicitly assumed that responses outside the cutoff regions are zero.
Hence, only return levels for which there are minor contribution from the discarded LT
conditions could be reliably estimated. However, as seen from Figure 4.16, this is a valid
assumption for MBld

y larger than about 26.0. Hence, it is believed that the 100-year return
value of 27.112 MNm, as obtained from the 10 000-year of samples is a reasonable accurate
estimate. The estimate based on 1 000 year of data is obviously even less affected by the
truncation of the LT distribution, but more affected by statistical uncertainty.

duration cutoff U cutoff σU 100-year MBld
y 50-year MBld

y

[years] [m/s] [m/s] [MNm] [MNm]
1 000 3.0 5.0 26.334 24.649
10 000 3.5 8.0 27.112 25.093

Table 4.3: Overview of the brute-force estimation of the 100-year return value for the
response MBld

y .

Sequential sampling results As described in section 4.2.2, the GP-model represents
the distribution parameters in the distribution of the 10-minute maximum response. The
distribution parameters are fitted based on nseeds 10-minute simulations. Different distribu-
tion models and different number of seeds (i.e. number of 10 minute response simulation)
were tested. Below results for the Gumbel distribution for 6, 18 and 90 seeds (i.e. 1-hour,
3-hours and 15-hours of response simulations in each LT condition) and the GEV distribu-
tion for 18 and 90 seeds are reported. The results, in term of estimated 100- and 50-year
return values as well as failure probability pf , as function of the number of ST simulations
(i.e. the number of LT conditions used to train the GP) are shown in Figure 4.17. As
seen from this figure, the estimated 50- and 100-year return values converges to values
in relatively good agreement with the brute-force results within 10-20 iteration of the se-
quential sampling approach. For the case using the GEV-distribution with nseeds = 18, the
convergence is somewhat slower, which can be explained by the fact that large uncertain-
ties in the distribution parameter estimates (i.e. large variation when sampling distribution
parameters from the GP leads to large variations of the responses). Compared with the
environmental contour estimates, it is observed that assuming the 90% quantile of the ST
response distribution, contour estimates agree reasonably well with the brute-force and the
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sequential sampling approach. Assuming the 99%-quantile significantly over-estimates the
50-year extreme response, whereas assuming the median response leads to a significant
under-estimation of the extreme response. However, the 90%-quantile agrees well, with
only a slight over-estimation of the response, which corresponds to slightly conservative
designs.

As shown in the top-right picture of Figure 4.17, the annual failure probability converges
with more difficulty toward a value slightly underestimating the reference obtained with
Brute force sampling. To investigate what could explain this bias, let’s try to check the
distribution of points in the LT space, after 50 enrichments (Figure 4.18). The points
seem well distributed according to the enrichment criterion shown on the right picture.
Another possibility may be due to some outliers complicating the Gumbel fitting of ST
maxima. Indeed, this assumption is confirmed in several examples of exceedance curves
shown in Figure 4.18 where outliers are highlighted by surrounding circles. The origin of
such outliers in the max quantity predicted by mNARX surrogate have not been identified
by lack of time but may probably due to an application of mNARX out of its training
domain, which is also justified by some points giving Not a number (Nan) outputs. We
assume in the following that such problem will not appear when using physical simulators
of offshore wind turbine dynamics and consider the Sequential Sampling method to be the
most efficient for computing stationary ULS reliability.

Results South Brittany For the South Brittany case the results of the sequential sam-
pling are shown in Figure 4.20. Here, only the Gumbel distribution was considered. Note
also that for South Brittany the period over which the LT variables (U , σU) are assumed
stationary is one hour, so that e.g. nseeds = 3 in Figure 4.20 corresponds to running three
one-hour response simulations. The Gumbel distribution was, however, still fitted to 10-
minutes maximum responses as for Teesside. That is, each one-hour response time series
was split in six 10-minutes parts, from which the 10-minute maximum values were extracted.
It is interesting to note that for South Brittany the contour approach underestimates the
50-year return value significantly. It is likely that is due to the fact that the main contribu-
tion to the 50-year response is coming from LT parameters well inside the contour. Hence,
this represents a situation where extreme ST responses in relatively common LT conditions
dominates the extreme response. This is illustrated in Figure 4.21, which shows the area in
the LT plane that have responses exceeding the 50-year return level. It is observed that for
Teesside, the LT conditions giving rise to extreme responses are much closer to the contour
lines compared to South Brittany. It is not clear exactly why the ST variability is so much
more dominating in the South Brittany case. It could either be due to specifity in the wind
parameter joint distribution, or to the longer runtime of simulations (1h instead of 10min).

4.2.5 2D results with the outcrossing approach in the joint ST-LT space

The mNARX model output. For reasons of time limitations, the stationary case analysis
will be carried out with the surrogate mNARX model developed by the partner ETH-Zurich
in WP4 (Schär et al., 2023). The mNARX model considers LT and ST wind conditions as
inputs. The output of the mNARX model at time t: S(t; .), is a function of the discretized
(y, z) windbox sections from time 0 up to the largest discretization time below t. Before the
output calculation, each 19×19 (y, z) section is represented with a discrete cosine transform
(DCT) and only the 16 lowest frequency components are kept. Therefore the DCT is a
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sum of 16 cosines, 4 for each dimension (y, z) with period 2 × 19/i with i = 1, ..., 4 such
that the highest frequency correspond to a period 19/2 which covers half the discretized
dimension. In order to not eliminate any frequencies, the discretization must be fine enough
to retain at least 4 points for each y and z dimension (which means we have at least 2
points to correctly identify the highest frequency cosine). We could therefore have used an
even coarser discretization in y and z (at least 5 × 5).

Stationary Wind spectral representation. Wind space-time series are generated with
the HiperSim tool box (Dimitrov, 2023) by combining multi-dimensional Fourier basis and
Gaussian coefficients with variances derived from the Mann spectral density (Mann, 1998).
This description of the wind is called in the literature spectral representation. We will
consider a Mann spectrum combined with two dependent LT parameters ξ = (U, σU)
which are the time average mean speed and its related standard deviation measuring the
turbulence. The ST wind representation and the LT parameters are supposed independent
such that on a 10-min interval the wind field, in the turbine direction, is represented as:

ν(t, y, z; ξ) = U × U(y, z) + σU × νF (tU, y, z) (4.28)

where U(y, z) is the vertical wind shear, νF is a zero mean stationary GP with Mann spectral
density: M(ω) such that:

νF (x, y, z) =
MF∑
i=1

αF
i ψ

F
i (x, y, z) (4.29)

where for i = 1, ...,MF the set of αF
i are the so-called ST parameters such that αF

i ∼
N (0, σ2

i ) with σ2
i = M(ωi)dωi and dωi = ωi − ωi−1. The set of functions ψF

i are the 3d
Fourier basis at frequency ωi (Shinozuka and Deodatis, 1991).
Given ξ the variance of ν will be expressed as σ2

U × σ2
Mann where σ2

Mann is supposed to be
one. Nevertheless we can notice that the covariance of ν will also involve the U quantity
with an expression that is not straighforward.
With the introduced wind representation, the stationary part of the wind on a 10 minutes
interval is independent of the LT parameters ξ and is characterized by MF ST random
parameters of the order of several hundreds.
In order to construct the space-time wind (4.28) from a 3D-space wind νF independent of
the sampled U we considered a maximum mean wind speed of 25m/s such that with the
maximum time of 75s the x component is defined on the interval [0m, 1875m] (with upper
bound calculated by the product 25 × 75 = 1875m). The discretization in the x dimension
is of 1501 points (for 75×20+1). The y variable is defined on the interval [−68.5m, 68.5m]
with a discretization of 19 points and the z variable on the interval [14m; 151.5m] with
also 19 discretization points.

Unsupervised wind dimension reduction: Karhunen-Loève (KL) expansion. In
order to achieve the reliability analysis in our time variant setting, discretizing the wind into
thousands of wind values leads to a high dimensional representation which will face any
method to the curse of dimensionality (Taylor, 1993; Zimek et al., 2012). We need to have
access to a reduced parameterization of the wind generation. Instead of manipulating the
spectral representation implemented in HiperSim, we used a non-intrusive approach with
KL expansion (Loève, 1978; Wang, 2008) of the wind learned on a set of samples from
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HiperSim. This latter will enable the access to a size-controled parameterization of the
wind box to be involved in the reliability analysis.

It is known that the spectral representation and the KL expansion are equivalent for
stationary random processes with infinite support (Huang et al., 2001). On finite support,
to achieve a given level of variance explanation, the perfectly estimated (for instance with
an analytical solution to the Fredholm equation) KL expansion will require less coefficients
than the spectral representation (Huang et al., 2001). When the covariance is estimated
well enough, the KL still requires in general less coefficients in the representation for a
given accuracy and in particular the more irregular the process, the smaller the number of
coefficients is required in comparison to the spectral representation (Huang et al., 2001).

To reduce the number of ST parameters, we propose a KL representation on a smaller
time interval than the initial 10 minutes wind stationarity. Indeed we assume that the
simulator output will inherit the stationary character of the wind input as a measurable
non-linear function of a stationary random process despite some loss of stationarity due to
the KL truncation. The stationarity assumption will be discussed in the next paragraph.
We estimate the KL expansion of νF from N = 1000 Mann simulated winds of t0 = 75
seconds with HiperSim such that

νKL(x, y, z) =
M̂KL∑
i=1

αKL
i

√
λ̂iψ̂i(x, y, z). (4.30)

where αKL
i ∼ N (0, 1) with the λ̂is and ψ̂is respectively the estimated eigen values and eigen

functions involved in the Fredholm equation to be solved in the KL expansion representation
(Wang, 2008). The number of kept terms in order to explain 75% of the variability of the
initial process νF is M̂KL = 139. A similar analysis was carried out on an interval of 100s
leading to M̂KL = 168 terms kept to explain the same 75% of the variability. These different
estimators are obtained using the SVD approach from OpenTURNS software Airbus-EDF-
IMACS-ONERA-Phimeca (2024) which enables the computation of a 3D KL expansion and
presented fastest estimations and predictions on a few comparison with others estimation
approaches such as the projection approach used in the package fda from R.

We can notice that a KL approach constructed on simulated series with varying LT and
ST parameters would give as output non-Gaussian coefficients encompassing the random-
ness of both LT-ST parameters and disabling the possibility to discriminate the LT from the
ST values in a KL simulated wind. For instance it will not be straightforward to find the
LT-ST wind representation corresponding to the design point found in the corresponding
KL-coefficients space. Nevertheless, putting aside high-dimensional setting issues, the fail-
ure probability could still be estimated in this manner. This difficulty is avoided in this work
thanks to the independence of the Mann spectral density, characterizing the ST wind, with
the LT parameters ξ. It would by contrast be encountered if one use the Kaimal spectrum
with NREL TurbSim turbulent wind generator (Kelley and Jonkman, 2007).

Discussion on the stationarity hypothesis When truncated and estimated the KL
expansion of a stationary random process loses to some extend the stationarity property
as has been demonstrated numerically in Ghanem and Spanos (1991); Field and Grigoriu
(2004); Grigoriu (2006); Stefanou and Papadrakakis (2007); Chen et al. (2018). We also
confirmed the loss in stationarity with the KL representation of the wind input GP which
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implies a loss in stationarity of the output. To display the level of stationarity loss on
the flapwise blade root moment, from a wind spectral representation and its estimated KL
expansion, we compare the respective output means in Figure 4.22, variances in Figure 4.23
and covariances between S(t) and S(t+ h) as a function of t for different lags h in Figure
4.24, 4.25 and 4.26. For fixed (U, σU) = (10m/s, 1m/s), we sample a thousand ST wind
configurations from both spectral and KL representations. The output is then obtained
with mNARX and the statistics are estimated on the thousand output samples for both
cases. We can notice differences between the variance and covariances obtained from the
KL and spectral version of the wind. The order of magnitude could be acceptable for the
analysis. Nevertheless, we can clearly notice that overall the estimated mean, variance and
covariances are not constant as should be. A first obvious factor that could explain part
of this variations from constant is the size of the sample. It could be increased to refine
the statistics estimators but the small impact would not explain such variations. Another
possible factor could come from the mNARX model which as been trained on winds with
different LT parameters and 10 minutes ST generated from a Kaimal (Dimitrov et al.,
2022) and not a Mann spectrum. The behavior with respect to stationarity of the mNARX
model have not been assessed and seems to us the first source of loss of stationarity.
On a real simulator, stationarity must also be assessed since the blade pitch and torque
controller might involve discontinuities in the output with respect to the environmental
condition inputs and therefore potential loss in stationarity in some areas of the inputs
space. Otherwise, if the output behaves continuously w.r.t. the environmental conditions
then stationarity can be assumed. From now on, we will consider the output stationary and
keep in mind that the results might be altered in practice when using the mNARX model.

We also have to take into consideration the fact that the output time series at time t
will depend on the environmental conditions within the interval [0, t] and not only at time t.
Therefore under the hypothesis of stationary inputs, the stationary regime expected on the
output will require a transition period between the structure being set in motion and the
moment it reaches its steady state. The analytical optimal ts value is not derivable since it
depends on the non-linear multi-physics behavior of the black-box numerical simulator but
numerical experiments showed that considering the output stationary from ts = 75 seconds
or 100 seconds seemed reasonable.

Idea to reduce the loss in stationarity induced by KL based wind. In order to
mitigate the truncation impact on the approximation we multiplied the KL expansion by a
constant term in order to correct the truncation error. But tuning this parameter by hand is
not straightforward. In Chen et al. (2018) (for a one dimensional random process) a modified
KL expansion is proposed in order to reduce the loss in stationarity and ergodicity involved
by the KL truncation and estimation. They showed that a proper KL correcting factor
should depend on t and proposed as correcting factor the inverse of the time dependent
KL truncated standard deviation. This latter result would seem to indicate, that a good
constant correction factor could be the inverse of the integrated KL truncated standard
deviation. We did not implement this strategy in this preliminary work. In futur work, in
light of the results in (Chen et al., 2018), quantifying the impact of the KL truncation on the
estimated probability or at least on the associated reliability index might be recommended.

Outcrossing method results and challenges. In the PHI2 approach of Andrieu-Renaud
et al. (2004), with only ST parameters, a FORM approximation is used. Our initial aim
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was to extend the PHI2 approach with joint LT and ST uncertainties as in Perdrizet and
Averbuch (2011). Nevertheless the optimisation task involved for the Design Point (DP)
estimation happened to be too difficult since all tested optimizer failed to converge to
any reasonable solution. The optimizer delivered for instance the design point presented
in Figure 4.27 with its associated output in Figure 4.28. The design point norm is
approximately 9.3 which corresponds to an approximate mean outcrossing rate in the joint
space N̄ of the order of 10−20 which seems far too low. By setting aside the high dimensional
geometry issue to be discussed in the next subsection, two main factors have been detected
that could explain the difficulty.

First since we are seeking for a failure event at a specific time ts, we can anticipate
that a small change in the ST-LT parameters might change the configuration from failing
to reliable at the given time, meaning that the failure area is not a nice connected set
and therefor making the optimization favourable to multiple local minima. Also a main
issue is the lack of identifiability between the LT parameter and the ST one. For instance
the LT variance term and the ST coefficients can not be distinguished in the optimization
process since they multiply themselves in the problem formulation (4.28)-(4.29). In that
context, the optimizer seems to get stuck or does not converge in a reasonable number of
simulations.
A second issue is the lack of confidence we can have on mNARX responses when more
extreme parts of the ST-LT space are explored in the optimization (same remark holds if
FORM is performed only w.r.t ST parameters). Indeed, for this work, mNARX has been
trained on a limited number of non-extreme set of parameters (Dimitrov et al., 2022). To
mitigate the first issue, a two step strategy is proposed (the second issue is put aside in the
following since extreme prediction errors are expected to be negligible with a real simulator).
We will begin by performing the FORM analysis only w.r.t. the ST parameters for fixed
LT. Since each FORM analysis is costly, a Kriging metamodel can be built between the LT
parameters and the FORM estimations. For this purpose, the FORM analysis with only the
ST parameters should be carried out multiple times according to a DoE of LT parameters
values.

We introduce here a new algorithm presented in (Cousin et al., 2024) and called MAK-
SUR standing for Mean Estimation with an Active Kriging based on a Stepwise Uncertainty
Reduction approach. This algorithm dedicated to the computation of expectations, uses a
sequential sampling with an enrichment function derived from SUR approach Bect et al.
(2012). The DoE of LT parameters values is then composed of an initial DoE to be enriched
with this MAKSUR algorithm. Finally the expectation with respect to the LT distribution
would be estimated with a direct MC method coupled to the learned surrogate As will be
explained below, we stopped at the ST-FORM stage since the standard FORM analysis in
high dimension can not be fully trusted in particular in this multiple local minima setting.
Suggestion of alternatives to the standard form will also be discussed.

Using the previously introduced notations we seek for the bound

pyear
f ≤ TN̄

with N̄ = Eξ

[
P+

ρ (ts; ξ)
]

and P+
ρ (ts; ξ) given in (4.24) with ρ fixed for this analysis to

27112 kNm and stationarity supposed reached at ts to 75 or 100 seconds. The first key
step consists in performing the FORM analysis for fixed LT i.e. estimating P+

ρ (ts; ξ) for
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fixed ξ. The task involves a high-dimensional input vector because of the ST wind high
frequency representation encoded in its KL expansion. We will now focus on the FORM
analysis in high dimension. We first need to solve the FORM design point research problem:

α∗(ts) = arg min
α∈RM̂KL

∥α∥ subject to s(ts, α) ≥ ρ (4.31)

where s(ts, α) is the model output at some given time ts (100 seconds in the following
FORM result) obtained from a wind input represented by its KL coefficient vector α.
Indeed, following the work of Koo et al. (2005); Jensen and Capul (2006); Sudret (2008),
when considering the environmental conditions described as Fourier based GP (Shinozuka
and Deodatis, 1991), the outcrossing rate can be formulated with respect to this unique
design point instead of the two DP estimation required in the standard PHI2 approach.
Following the same logic, under some derivability assumptions introduced in Kadota (1967)
when using a KL expansion of the environmental conditions, we derived the corresponding
outcrossing formula:

P+(ts) = U2

2π
∥α∗(ts)∥w

∥α∗(ts)∥
exp

(
−∥α∗(ts)∥2

2

)

where α∗(ts) is the design point solution of (4.31), ∥ · ∥ stands for the euclidean norm,
∥ · ∥w for the weighted euclidean norm with weights

wi =
[

Ψ′
i(Uts, y, z)

Ψi(Uts, y, z)

]2

for i ∈ 1, ..., K and fixed (y, z) such that:

∥α∗(ts)∥2
w =

M̂KL∑
i=1

wiα
∗
i (ts)2.

In order to estimate α∗(ts) the trust region algorithm SQA (Sinoquet and Langoüet, 2013)
was used. The latter is a derivative free algorithm and has produced excellent results on
large benchmarks with a reduced simulation budget in comparison to algorithm such as
iHLRF, NLPQPL, SQPAL and COBYLA (Murangira et al., 2015).

In this setting, we managed to obtain with approximately 1500 to 2000 mNARX sim-
ulations a solution to the FORM design point research problem. For fixed LT parameters
ξ = (U, σU) to (15m/s, 5m/s) we obtained a design point norm ∥α∥ of approximately
5.3 which correspond to an instantaneous failure probability of the order 10−5 which has
to be weighted by the selected LT probability (≈ 10−11) since N̄ = Eξ

(
P+

ρ (ts; ξ)
)
. If we

suppose such probability as the leading order of magnitude then the associated year failure
probability, with the selected LT, would be of the order of 10−9 (by multiplying 10−16 by a
year in seconds). The wind associated to this design point and the corresponding output
is depicted in Figure 4.29.

As introduced, the next step would be to average multiple estimations of P+
ρ (ts; ξ)

w.r.t. the distribution of ξ. However, an additional problem linked to the high-dimensional
geometry associated to ST parameters, involved in the computation of P+

ρ (ts; ξ) for fixed
ξ, could alter the confidence in the final estimate. It is the topic of the next section.
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The high dimensional geometry issue. Let us consider that our model inputs (i.e.
ST parameters) are all independent and Gaussian (if not an iso-probabilistic transformation
can be applied before hand). It is then known (Katafygiotis and Zuev, 2008) that the
probability mass of a multivariate Gaussian distribution lies on a strip centered on the ring
of radius

√
d− 1, for large d, and relatively rapidly decreases as you move away from the

high probability ring. In this high-dimensional context, the design point formulation (4.31),
by construction, will not find the point of failure with highest probability (since its norm will
almost always be smaller than

√
d for large d) and the linear approximation at that point

has not the same interpretation that is expected in low dimension. Different configurations
can arise. First we can notice that the failure probability will be characterized by the extend
of the intersection of the failure area with the high probability ring. If the failure area is not
connected, as depicted in Figure 4.30, it seems then clear that a linear approximation will
not lead to any good failure probability estimation (Katafygiotis and Zuev, 2008). In the
connected case, a linear approximation should be used if there is a high degree of confidence
in the linearity of the limit state otherwise the estimation might be again far from reality
(Katafygiotis and Zuev, 2008) as depicted in Figure 4.31. In the connected case, we can
nonetheless mention the strategy proposed in Wang and Song (2018); Chiron et al. (2023)
that uses the DP but then replace the linear approximation by a conic one to be calibrated
and the one from Wang and Der Kiureghian (2017) which implements a strategy based on
space-filling (geometrically) samples in the orthogonal plane to the design point direction.
To summarize, our numerical test suggests that the mNARX model presents a configuration
similar to the sketch presented in Figure 4.30, since small perturbations around the DP can
lead to non-failure, and relatively small perturbations around failure points closest to the
high probability ring also lead to non-failure.

Summary and perspectives To conclude, we had the hope that the FORM analysis,
despite its lack of certification in the estimation (no confidence interval), would enable a
rough estimation, at minimal simulation cost, of the sought failure probability. But from our
literature analysis and our numerical tests, constrained in time, we finally concluded that
achieving a direct FORM analysis in high dimension would not offer a good estimate of the
failure probability under the conditions laid down in its original form. More tailored FORM-
like approaches such as in Wang and Der Kiureghian (2017); Wang and Song (2018); Chiron
et al. (2023) could be recommended when dealing with ”connected-enough” failure region.
More generally, the high-dimensional geometry involved is complex to grasp and therefore
strongly challenges all possible strategies that often will require large number of simulations
in the rare event setting. Dimension reduction appears to us to be a recommended or
even a mandatory step before or within the reliability task (keeping in mind that learning
the effective dimension can also be complex and requires a large number of simulations).
Finally, to gain a broader perspective on the applicable methods and their performance in
high dimension, a literature review, or at least a picture of it at current time, is proposed
in the report Breaz et al. (2024).

4.2.6 Conclusions of the 2D benchmark

Several ULS methods were compared on a simplified 2D benchmark (mean wind speed and
turbulence) for the case of stationary events: contour methods, a combination of GP and
sequential sampling, a BNN and finally an outcrossing optimization approach in ST-LT
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space. The BNN faces limitation in prediction accuracy due to non-Gaussian distribution
of the ULS tail distribution. The outcrossing approach is also limited as it introduces
high dimension for the ST input parameters which implies non connected local minima
for which the FORM approach is not appropriate. Fortunately, the GP with sequential
sampling method was successful in predicting with enough accuracy the annual failure
probability of ULS, with a feasible computational time (measured by the number of calls
to costly multiphysics simulators). A minimum number of stochastic seeds should be
considered in order to capture the ST variability. If for Teesside, the Q90 quantile values
of the extreme loading compares well between the Sequential sampling and the Contour
methods, significant differences have been obtained for the South Brittany case study.
These differences are due to high contribution of ST uncertainty inside the domain, in
contradiction with the main assumption of the contour approach. Note that simulations
are also run with the mNARX simulator trained the on fixed NREL 5MW wind turbine. This
difference of failure point distributions between South Brittany and Teesside case studies
can thus only be due to a specificity of the joint wind parameter distribution or the longer
simulation (1h instead of 10min). Similarly, a more difficult convergence of annual failure
probability and slight underestimation when compared to brute force may be explained by
a use of mNARX out of its training domain. Given its efficiency for converging in return
value load, plus assumption that limitation on annual failure convergence and bias will not
appear when using a physical simulator instead of a surrogate like mNARX, we selected
this approach for the final application on Teesside 6 and South Brittany case studies 7.
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Figure 4.1: Examples of a Bayesian Neural Network (BNN) fit to a simple cubic polyno-
mial curve, illustrating how different uncertainties can be represented by the BNN. Top
left: deterministic model not considering any uncertainty, top right: model considering all
uncertainty as aleatory, bottom left: model taking only epistemic (model) uncertainty into
account, bottom right: a model that considers both epistemic and aleatory uncertainties.
Figure reproduced from Hiperwind Deliverable 4.1 Dimitrov et al. (2022).
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Figure 4.2: Illustration of the scatter from a single realization of a BNN model versus the
actual data.
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Figure 4.3: Examples of Gaussian likelihood fitting to account for uncertainty in parameter
estimates. Upper row: The ”true” likelihood of the Gumbel-parameters under the observed
data, the corresponding MCMC-samples, and the resulting best-fit Gaussian likelihoods.
Second row: The corresponding Gumbel-distributions with 95% confidence intervals based
on the ”true” and fitted likelihoods.

Figure 4.4: Left: the standard deviation of distribution parameters as function of LT param-
eters x = (U, σU). Middle: the estimated distribution s(x) of responses above 100-year
return value). Right: the acquisition function s(x)

∣∣∣σθ(x)

∣∣∣. Blue dots show existing points
used to train the GP-model. Blue crosses show points leading to a response above the
100-year return value, and the red cross shows the new point xnew.
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Figure 4.5: IFORM and DS contours for wsp (U) and turbulence (σU) with the omni-
directional data, Teesside location.

Figure 4.6: DS 50-year contour and corresponding extreme response 50% fractile of flapwise
blade root bending moment MBld

y [MNm], Teesside location.
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Figure 4.7: DS 50-year contour and corresponding extreme response 90% fractile of flapwise
blade root bending moment MBld

y [MNm], Teesside location.

Figure 4.8: DS 50-year contour and corresponding extreme response 99% fractile of flapwise
blade root bending moment MBld

y [MNm], Teesside location.

Figure 4.9: IFORM 50-year contour and corresponding extreme response 50% fractile of
flapwise blade root bending moment MBld

y [MNm], Teesside location.
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Figure 4.10: IFORM 50-year contour and corresponding extreme response 90% fractile of
flapwise blade root bending moment MBld

y [MNm], Teesside location.

Figure 4.11: IFORM 50-year contour and corresponding extreme response 99% fractile of
flapwise blade root bending moment MBld

y [MNm], Teesside location.
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Figure 4.12: IFORM and DS contours for wsp (U) and turbulence (σU), South Brittany
location.

Figure 4.13: IFORM 1-year contour and corresponding extreme response 90% fractile of
flapwise blade root bending moment My

Bld [MNm].
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Figure 4.14: IFORM 50-year contour and corresponding extreme response 90% fractile of
flapwise blade root bending moment My

Bld [MNm].

Figure 4.15: Comparison of tail probabilities between simulated data generated with the
mNARX blade load time series simulator Dimitrov et al. (2022); Schär et al. (2023) and a
BNN fit to the data.
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Figure 4.16: Brute force samples for the 103-year and 104-year periods.
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Figure 4.17: Estimated 100- and 50-year return values for Teesside as well as estimated
failure probability pf from sequential sampling, as function of the number of ST simulation
used to train the GP. Results from brute-force sampling and from the direct sampling
contour method (for 50-year return value) are also included.

Figure 4.18: Distribution of Sequential Sampling points in the (U, σU) space after 50
iterations.
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Figure 4.19: Examples of Gumbel fit on exceedance curves for several LT conditions. Outlier
point significantly deviating from the tail are highlighted by surrounding circcles.
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Figure 4.20: Estimated 100- and 50-year return values for South Brittany from sequential
sampling, as function of the number of ST simulation used to train the GP. For the 50-year
return period the result from the IFORM contour method is shown.
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Figure 4.21: Contribution to the 50-year return value as function of LT parameters for
Teesside (left) and South Brittany (right).

Figure 4.22: Mean with respect to time of the flapwise blade root moment (KNm) obtained
from mNARX.
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Figure 4.23: Variance with respect to time of the flapwise blade root moment (KNm)
obtained from mNARX.
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Figure 4.24: Covariance with lag time of 10 seconds of the flapwise blade root moment
(KNm) obtained from mNARX.
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Figure 4.25: Covariance with lag time of 50 seconds of the flapwise blade root moment
(KNm) obtained from mNARX.
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Figure 4.26: Covariance with lag time of 100 seconds of the flapwise blade root moment
(KNm) obtained from mNARX.

Figure 4.27: Wind speed in m/s associated to the design point estimated in the ST-LT
space.
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Figure 4.28: Flapwise blade root moment in kNm associated to the estimated DP in the
ST-LT space.

Figure 4.29: Wind speed (m/s) associated to the design point estimated in the ST space
and corresponding mNARX output (kNm).
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Figure 4.30: Sketch of a standard Gaussian space, design point and disconnected failure
area configuration in high dimension.

Figure 4.31: Sketch of a standard Gaussian space, design point and connected failure area
configuration in high dimension.
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5 Methodologies for transient ULS
In this section we focus on the case of a transient event that is composed of a wind gust
and or a shutdown due to electric grid loss, as considered for instance in the DLC2.3 of
IEC (2019b). A new gust description, fitted from real observations, is compared to the IEC
gust, then a methodology is presented to compute the failure probability and analyse the
gust and shutdown influence on ULS reliability.

The case study selected for this analysis is an OWT with monopile foundation of the
Teesside wind farm case study (EDF, UK) that is described in the stationary input setting in
section 6.1 but with transient wind. The structure is similarly parameterized. The quantity
of interest, the LT wind parameters and threshold ρ are also similar. The main difference
is the consideration of a transient ST wind by adding to a fixed ST wind a gust plus the
grid loss.

5.1 Modelling of Transient Events
5.1.1 Turbulence

The turbulent flow field was generated by HiperSim Dimitrov (2023). Originally in the
project, the turbulence intensity was set by scaling the flow field according to the standard
deviation of the stream-wise velocity. However, it was later discovered that this distorted the
acceleration statistics. According to Mann (1994); Kelly (2018), the HiperSim parameters
can be related to turbulence intensity through the αϵ2/3 parameter. The equation used in
this work is shown by equation (5.1).

αϵ2/3 =

(
σu

1.802

)2

0.69L2/3 . (5.1)

Since the turbulence box is generated with finite dimensions and spacing, the underlying
frequency spectrum of turbulence is truncated. So the underlying turbulence intensity will
appear less than the expected level.

5.1.2 Gusts

Gusts are modeled with equation (5.2) where u(x, t) is the normal turbulent flow and the
second term is the gust. The gust is parameterized by the random variables A representing
the acceleration, and T denoting the rise time T . The variable tgust determines the time
of the gust occurrence. It is assumed that the gust is uniform in the transverse directions.

U(x, t) = u(x, t) + AT

π

(
1 + tanh

(
π (t− tgust)

T

))
. (5.2)

The random variable A follows a log-normal distribution whose parameters are given later
on. T is also modelled with a log-normal distribution with a standard deviation σT = 0.2,
and the mean is conditioned on A, as shown in equation (5.3), where ∆Uref = 6m/s and
aref = 0.4m/s2.
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µT = σ2
T + log

 ∆Uref

aref

(
1 +

(
A

aref

)3
) 1

3

 . (5.3)

Two different distributions were considered for the log-normal distribution of A. The first
is based on statistics with a 0.1Hz filter frequency, and the second a 1/3Hz frequency. The
mean and standard deviation for both of these distributions are given in Table 5.1. Most
of the work here is based on the statistics with a 1/3Hz, however preliminary exploratory
work considered 0.1Hz statistics as well. These statistics have been determined by M.
Kelly during WP2 of HIPERWIND and explained further in Kelly and Vanem (2022).

Table 5.1: Gust acceleration distribution parameters

Filter Frequency [Hz] µa σa

1
3 −0.08 0.26

0.1 −0.75 0.22

5.1.3 Grid-loss

The time of the grid loss is considered to occur randomly, with a uniform distribution
without correlation with any other random variables. When grid loss and gusts are simulated
together, the relative timing of these two events becomes a stochastic variable. A total of
700s is simulated, where the gust occurs at 300s and the shutdown can occur at any time
in the first 600s. The additional 100s is to capture any transient loads occuring after a late
shutdown event.

5.2 The effect of gust shape on loads with comparisons to IEC
61400 design standards

The gust function defined in section 5.1.2 differs from the gust function typically used in
the IEC 61400-1 design standard IEC (2019a). A study was carried out to understand the
impact of the gust function on the loads.

The IEC gust is described in section 5.2.1. Different modifications of the gust function
were created to explore the impact of different aspects, these are described in section 5.2.2.
Finally, a MC study was carried out to understand the impact of gust shape on the loads.

5.2.1 The Extreme Operating Gust within the 61400-1 design standards

The Extreme Operating Gust (EOG) defined within the IEC 61400-1 design standard IEC
(2019a) is given by equation (5.4) where Ugust defines the magnitude and Teog is taken to
be 10.5s. This equation is only valid between the time t = 0 and t = Teog.

U(z, t) = Uavg(z) − 0.37Ugust sin
(

3πt
Teog

)(
1 − cos

(
2πt
Teog

))
(5.4)
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within the standard, Ugust is defined as shown in equation (5.5) which gives two possible
values. For this application, only the second value is relevant, which depends on the standard
deviation of the stream-wise velocity (σu), the rotor diameter D = 93m and turbulence
scale parameter Λ1 = 42m in this case.

Ugust = min
1.35 (Ve1 − Vhub) ; 3.3

 σu

1 + 0.1
(

D
Λ1

)
 . (5.5)

5.2.2 Matching acceleration and rise-time with the EOG

Multiple ways of defining the EOG were considered in this study, the first is to use the
definitions within the 61400 design standards summarized in section 5.2.1. This definition
depends only on the stochastic variable σu. Both the Ugust and Teog parameters can
be varied to match the statistics described in section 5.1.2. This section describes the
relationship between Ugust and Teog and the A and T values.

The peak acceleration of the EOG is given in equation (5.6),

aeog = 6.13Ugust

Teog

. (5.6)

To capture the influence of T from the tanh gust function, in the EOG gust function,
we consider matching the changes in velocity between the two functions. In the first cases,
we consider only matching the maximum change in velocity. This leads to the definition of
Ugust in equation (5.7) in terms of the A and T from the tanh gust function,

Ugust = 2AT
0.74π . (5.7)

An alternative change in velocity considers the difference between the minimum velocity
and the maximum velocity, this leads to the definition in equation (5.8),

Ugust = 2AT
π

. (5.8)

Figure 5.1 compares the tanh gust with different versions of the EOG gust. In all cases,
the A and T parameters were taken as 0.8 and 6 respectively. The different curves are
shifted to highlight how they match in acceleration and the different ∆U values. “EOG
acc” only matches the acceleration and retains the Teog = 10.5 from the design standards.
“EOG max” uses both A and T to match both the acceleration and the maximum velocity.
“EOG delta” uses both A and T to match difference between the maximum and minimum
velocity. Finally, “TANH” is the tanh gust function using A and T .

5.2.3 The loads due to gust shape

A MC simulation was carried out to explore the effect of the gust function. A sample of size
100,000 was taken. The considered stochastic space includes the same 5 dimensions than
the stationary ULS (wind speed, standard deviation of streamwise velocity, wave height,
wave period and wind/wave misalignment). When relevant, the acceleration and gust rise

51



HIPERWIND 5 METHODOLOGIES FOR TRANSIENT ULS

Figure 5.1: Comparison of different EOG functions with the tanh gust.

times were also included to control the strength of the gust. The von Mises stress of the
tower base and monopile base were compared.

Figure 5.2 and 5.3 shows the difference between the IEC EOG gust using the standard
definition and the tanh gust, for the tower stress and monopile stress respectively. The
standard EOG is based on the standard deviation of streamwise velocity, while the TANH
gust function and the other gusts are based on the joint (A, T) stochastic space. Since only
the standard EOG shows high loads at high wind speed, these loads can be attributed to
the gust strength being conditioned on the standard deviation of streamwise velocity. For
these simulations, the standard EOG simulations included an EOG with every simulation,
it is not clear what is the intended return period of this events, where as the A and T
statistics are based on the largest event in any given 10 minute period. However, what
these graphs show is how these two different gust and stochastic space definitions effect
the overall trends.

The graphs also show how different EOG gusts, defined with the A and T variables
compare with the TANH function. The TANH function shows higher loads below rated and
lower loads above rated. This is likely due to the fact that the wind speed remains high
after the gust, so the simulation is effectively operating at a higher wind speed and thrust
operating on different points of the thrust curve.

Comparisons among the different EOG gusts based on A and T shows the effect of
varying the Teog. Keeping Teog at 10.5s produces the lowest loads, followed by the gust
based on matching the difference and finally, the gust based on matching the maximum
velocity gave the highest loads. The EOG based on matching difference of velocity gave
loads similar to the TANH function.

52



HIPERWIND 5 METHODOLOGIES FOR TRANSIENT ULS

Figure 5.2: Comparison of the tower stress from the standard EOG function and the tanh
gust function.
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Figure 5.3: Comparison of the monopile stress from the standard EOG function and the
tanh gust function.
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Figure 5.4: The frequency of loads with different gust statistics.

5.3 The impact of the stochastic space of load uncertainty
A series of MC studies were carried out to understand the main drivers of loads for transient
ULS simulations. There are two different sets of statistics for the gusts, the effect of these
statistics is explored in section 5.3.1. Then the stress in the monopile and tower stress were
compared in section 5.3.2. Then the buckling limit state is compared with the stress limit
state in section 5.3.3. Then in section 5.3.4 the effect of different transient event on loads
it shown. Finally, a preliminary reliability assessment is given in section 5.3.5.

In all cases, the MC simulation was based on 100,000 samples of the Teeside turbine.
The simulation uses the same stochastic space as the stationary ULS cases augmented with
the gust and grid loss parameters. All the studies were focused on the tower bottom stress,
with selected studies looking at the monopile stress and buckling. In most samples, 700s of
turbine operation is simulated, where the gust will occur at 300s and the shut-downs will
occur at any time between 0-600s.

5.3.1 The effect of gust statistics

Table 5.1 gives two different distributions for gust accelerations. These two sets of gust
statistics were included into 2 MC studies. The simulations simulated 100s of operation
where the gust would occur at 50s. Figure 5.4 shows the frequency and Figure 5.5 shows
the survival function.

5.3.2 Tower and monopile stress

In a number of transient IEC design load cases, the gusts are accompanied by faults or
control system actions such as startups and shutdowns. In this study, the MC studies
include gusts but not shutdowns or other events. This approach is chosen in order to better
compare the impact of the different gust event definitions without other disturbances. In
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Figure 5.5: The survival function of loads with different gust statistics

both cases, both the tower and the monopile stress was collected and compared in Figures
5.6 and 5.7. The simulations clearly show that tower stress is greater and will be the focus
for subsequent studies.

5.3.3 The buckling limit states

This study is based on the same study described in section 5.3.2, instead the buckling limit
state was explored in the tower and compared with the stress limit state. The comparison
is based on material utilization ratios. The stress utilization ratio is defined as the ratio
between the maximum computed stress and the ultimate failure stress, while the buckling
utilization ratio is based on the stress in the panels according to the Eurocode standards
Eurocode (1993). Figure 5.8 shows for all simulations, that the stress utilization ratio is
much greater than the buckling utilization ratio.

5.3.4 The impact of different transient events

A series of different MC studies were carried out to understand what transient events gener-
ate the greatest loads. As a reference, the loads from stationary conditions are calculated.
Then a simulation is performed with only shutdowns, only gusts and finally gusts and shut-
down combined. The results are shown in Figures 5.9 and 5.10. One consequence of the
shutdown is the reduction of loads after the event, resulting in a higher frequency of loads at
lower levels. Furthermore, the shutdowns alone do not tend to produce loads higher than
stationary conditions. Only simulations that included gusts were able to produce higher
loads with greater frequency than stationary conditions. Furthermore, simulations with
only gusts tended to produce high loads at higher frequency.
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Figure 5.6: Comparison of the probability distributions of tower and monopile stresses.

Figure 5.7: The survival function of loads on the tower and monopile.
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Figure 5.8: Buckling vs stress utilization.

Figure 5.9: The frequency of loads with different transient events.
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Figure 5.10: The survival function of loads with different transient events.

5.3.5 The dominating load driving events

Finally, the MC that only included gusts was further analyzed to understand the drivers
behind the highest loads. This was done by first identify the Pareto front between the
distance of samples in the standard stochastic space and the tower stress. This result is
shown in Figure 5.11. Then additional points near the Pareto front are collected. From
this set, the average direction within the stochastic space of these points is shown in Figure
5.12. The figure shows that the highest loads are driven by the gust acceleration.

5.4 GP model and active learning for the failure probability esti-
mation

5.4.1 Formulation and setting

In this section, the same case study of Teesside OWT is still considered with possible gust
and shutdown in operational conditions. For the sake of simplicity, the wave impact on
failure is considered of second order and therefore the wave ST seed is fixed, Hs and Tp are
fixed to their respective approximated marginal mean: (3.96m, 3.48s), and the wind-wave
angle β is set to zero.

We now consider the estimation of the failure probability, on a 620 seconds time interval,
characterized by the exceedence of the material resistance threshold ρ by the maximum von
Mises stress at the bottom of the OWT tower simulated with Deeplines WindT M . The von
Mises stress will be denoted νM in the following. A total of 7 or 8 continuous input random
parameters will be considered: the 10-minutes wind mean: U , the standard deviation: σU ,
the angle between the wind and the nacelle: ζ, the gust acceleration: Ga, the gust rising
time: Grt, the gust starting time Gst, the shutdown starting time: Sht (this parameter is
active only when a shutdown is considered) and the failure threshold: ρ.
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Figure 5.11: The Pareto front between stress and standard space distance.

Figure 5.12: The average direction in standard space of points near the Pareto front.
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Additionally, two independent random Bernouilli variables are considered: sd which
models if a shutdown occurs (1) or not (0) and wd models the two options for the wind
direction: open-sea (1) or land (0). Their respective Bernouilli probabilities are psd =
P(sd = 1) = 1.9 × 10−4 and pwd = P(wd = 1) = 0.274. The value for the shutdown is
derived from the 10 per year statistics given by Paz et al. (2023) for Teesside wind farm
(worst case of OWT in the farm for Low Voltage number of events 2015 to 2019).

We will denote X(sd, wd) = [U(wd), σU(wd), ζ, Ga, Grt, Gst, Sht(sd)] such that Sht(sd)
is random if a shutdown occurs and fixed to an arbitrary high value otherwise. Moreover
the joint distribution of (U(wd), σU(wd)) is different with respect to the value taken by
wd. Therefore, the random vector X(sd, wd) has dimension 7 when shutdown occurs and
6 otherwise. As previously said, the distribution of the wind and wave that was fitted
from met-mast and buoy data in HIPERWIND WP2 cannot be given here for reason of
confidentiality. The problem can be formulated as follows:

pf = Esd,wd

[
PX(sd,wd),ρ

(
S
[
X(sd, wd), sd

]
> ρ

∣∣∣sd, wd)] (5.9)

where the output S is the following transformation of the von Mises stress:

S[X(sd, wd), sd] = a× max
[0,∆T ]

νM[t; X(sd, wd), sd] + b

with ∆T = 620 seconds, and the two parameters (a, b) = (1.1, 135Mpa) that were cal-
ibrated in order to augment the failure probability and therefore reduce the calculation
burden irrelevant for this methodological proof of concept.

5.4.2 Method and results

Two main constraints conditioned our methodological choices: a reduced time to perform
the analysis and rare occasional failures of convergence of the Deeplines WindT M simulator
which is not managed by off-the-shelf algorithm. In this context we decided to handle
simulation failure manually within an active learning GP strategy.
A brute force approach to estimate (5.9) would require to actively learn four GPs: one
for each configuration of the couple of Bernouilli random parameters. But, since the wind
direction Bernouilli parameter only impact the wind input distributions and not directly the
model, we can only actively learn two GPs respectively with and without shutdown. We
will now describe how we build our model when shutdow is active the other case follows
the same steps. Let us estimate the probability of failure

pf (1, 1) = PX(1,1),ρ

(
S[X(1, 1), 1] > ρ

∣∣∣sd = 1;wd = 1
)

(5.10)

where X is therefore of dimension 7. To alleviate notations and ease the reading we
will suppose until specified otherwise sd and wd fixed to one and the conditioning will
not be explicitly written. We propose to build a GP surrogate model of the quantity
Y (X, ρ) = S(X) − ρ. Because of the known separability between ρ and S we used a GP
model with linear trend: β0 +β1 ×ρ. The covariance kernel used is an an-isotropic Matern-
5/2 with hyper-parameters τ and its length scale vector λ. The full set of hyper-parameters
(β, τ, λ) is calibrated by maximizing the model prior likelihood. The learned posterior GP
will be denoted Ŷ . Then the posterior failure probability writes

p̂f = PX,ρ

(
Ŷ (X, ρ) > 0

)
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The posterior mean probability (with respect to the GP uncertainty) can be formulated as

mp̂f
= EX,ρ

[
Φ
(m(X, ρ)
σ(X, ρ)

)]
where Φ is the standard Gaussian cdf, m and σ stand respectively for the posterior mean
and variance of Ŷ . The final proposed estimator of the probability is given by

m̂p̂f
= V ol(X )

Nestim

Nestim∑
i=1

p(Xi, ρi)Φ
(m(Xi, ρi)
σ(Xi, ρi)

)
(5.11)

where p represents the joint distribution of the random vector (X, ρ), Nestim = 10000,
(Xi, ρi)i=1,...,Nestim

is a Sobol sequence generated in the input set
X = [3m/s, 25m/s]× [0m/s, 6m/s]× [−8o, 8o]× [0ms−2, 3ms−2]× [1s, 23s]× [0s, 600s]×
[0s, 600s] × [100s, 600s] and V ol(X ) is its volume. A pseudo confidence interval is also
estimated by using the quantiles of the GP leading to

q̂+ = V ol(X )
Nestim

Nestim∑
i=1

p(Xi, ρi)1{m(Xi,ρi)+2σ(Xi,ρi)>0} (5.12)

and q̂− similarly defined with +2 replaced by −2 in the previous formula.

We can now describe our adaptive strategy. A GP surrogate is build on a relatively small
initial DoE N = 70. The surrogate is then actively improved using the SUR-Bichon active
learning criterion introduced in Duhamel et al. (2023) to augment the DoE, with the aim
of accurately estimating the failure domain. Four batches of 25 points and a final one of 30
points are iteratively added following a batch version of the SUR-Bichon criteria. The final
number of simulation for learning is therefore two hundred. The SUR-Bichon criteria was
optimized on a large discrete set of ten thousand points. Finally a large space-filling design
Nestim = 10000 coupled with the actively learned final GP surrogate is used to estimate the
probability with the posterior mean probability estimator (5.11) and the estimated bounds
(5.12) are also calculated.

GP model construction with shutdown. In Figures 5.13, 5.14, 5.15 and 5.16 we
present the evolution of the GP hyper-parameters along the batch iterations. The constant
trend does not change significantly along the different active learning iterations. The
coefficient β1 is estimated to approximately −1 which is indeed the true value. The variance
has no particular behavior. The plotted correlation length scales are normalized by the length
of the support of their respective variables; so that the greater above 1 the less variation
is expected in that dimension and vice versa. We notice that the mean wind, the gust
acceleration and the gust beginning time are those that generates the most variation on
the output.

In Figures 5.17 we present a parallel plot of the input and corresponding output Y and
their associated batch of points. The line are colored by level of the output. The same
parallel plot colored by the membership to the batch set (last column) is presented in
Figure 5.18. We can notice that the SUR-Bichon iterations enabled to actively add points
around the failure area for Y i.e. around zero. It seems clear that the leading parameter
to failure is the material resistance. The other variables were considered by the criteria
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Figure 5.13: Evolution of the constant trend β0 along the active learning iterations with
shutdown in the model.

uniformly important in term of reaching the limit threshold. The enrichment criterion
therefore spreads points almost uniformly on the support of these variables. Remember
that the distribution of the parameters are not taken into account for learning the GP.
Indeed, without a priori, we chose to have a good model on the whole support of the
variables. Finally, the integrated mean square error between the GP model and the true
response was estimated on an independent LHS-maximin validation DoE of size five hundred
at each stage of the active learning process. The IMSE start approximately around 14 and
decrease down to approximately 11 at the end of the learning. This seems to indicate that
the model has good predictive quality since the standard deviation of the response overall
the input space is of the order of 150.

GP model construction without shutdown. In Figures 5.19, 5.20, 5.21 and 5.22 we
present the evolution of the GP hyper-parameters along the batch iterations. The same
conclusion, as in the shutdown case, can be drawn for the trend coefficients and the variance
hyper-parameter. In term of length scales the mean wind and gust acceleration remain
important and here are joined by the gust length time and σU . In Figures 5.23 and 5.24
we present the same parallel plot, as in the shutdown case, of the input and corresponding
output Y and their associated batch of points. The same conclusion can be drawn about
the first order importance of the material resistance parameter ρ. Also, the same predictive
quality of the GP model was observed.

Failure probability estimation. We now present in Figures 5.25, 5.26, 5.27 and 5.28
the failure probabilities and their bounds estimated for the four possible cases. By weight-
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Figure 5.14: Evolution of the ρ coefficient β1 along the active learning iterations with
shutdown in the model.

ing these four probabilities by the corresponding probabilities P(sd, wd) the overall failure
probability is estimated to be of the order of 10−8. The evolution of the estimation of pf

given (5.9) is depicted in Figure 5.29. One may note a significant reduction of the pseudo
bound distance on the failure probability with shutdown and with wind coming from land
at simulation 132 (Figure 5.28) which would be interesting to further investigate.

Opening We can mention that with more time to introduce an automatic management
of the hidden simulator failure, we would suggest to tackle (5.9) with the Bayesian subset
simulation strategy (Bect et al., 2017) which seems well adapted to a setting with dimension
less than a dozen and time consuming simulations.

5.5 Conclusions of the Transient ULS study
This section presented ULS reliable methods dedicated to the transient event with a gust
or a grid loss. The gust was defined according to a new function fitted from several years
of observations in Kelly and Vanem (2022) and compared to the EOG of IEC standard
IEC (2019a). Then a massive MC sampling underlined the role of the gust acceleration in
increasing the maximum von Mises stress on tower base when compared to ULS stationary
event conducted on similar statistics. To reduce the computation cost of the MC sampling,
a method is presented which involves a GP surrogate iteratively enriched according to the
SUR-Bichon active learning criterion of Duhamel et al. (2023). We were able to prove
that with two hundred simulations a stable estimation of the transient failure probability
could be estimated (1.09 × 10−8). The pseudo confidence interval is nonetheless relatively
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Figure 5.15: Evolution of variance τ along the active learning iterations with shutdown in
the model.

large [3.78 × 10−10, 1.45 × 10−7] and could be improved. Moreover the active GP model
seems to strongly indicate that at first order the material resistance is of most importance
w.r.t. failure. Reducing uncertainty on this latter seems essential. The gust acceleration
and the wind speed mean seem also to be strong source of variation of the difference Y
between the maximum von Mises stress S on tower base and the material resistance ρ. To
better understand the impact of the parameters (other than the resistance) on the studied
moment we would suggest to directly build an active GP model on S instead of Y . This
would help to compare the results obtained with the analysis of the correlation lengths on
Figure 5.22 and that of the average distances around a Pareto front in Figure 5.12.
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Figure 5.16: Evolution of the correlation lengths hyper-parameters along the active learning
iterations with shutdown in the model.
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Figure 5.17: Parallel plot showing the Input and Output (Y ) distribution of the training
and learned design points for the goal-oriented GP construction with shutdown. Coloration
by level of the output.

Figure 5.18: Parallel plot showing the Input and Output (Y ) distribution of the training
and learned design points for the goal-oriented GP construction with shutdown. Coloration
by membership to the corresponding batch of points.
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Figure 5.19: Evolution of the constant trend β0 along the active learning iterations without
shutdown in the model.
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Figure 5.20: Evolution of the ρ-coefficient β1 along the active learning iterations without
shutdown in the model.
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Figure 5.21: Evolution of the variance τ along the active learning iterations without shut-
down in the model.

Figure 5.22: Evolution of the correlation lengths hyper-parameters along the active learning
iterations without shutdown in the model.
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Figure 5.23: Parallel plot showing the Input and Output (Y ) distribution of the training and
learned design points for the goal-oriented GP construction without shutdown. Coloration
by level of the output.

Figure 5.24: Parallel plot showing the Input and Output (Y ) distribution of the training and
learned design points for the goal-oriented GP construction without shutdown. Coloration
by membership to the corresponding batch of points.
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Figure 5.25: Failure probability estimation with shutdown and wind from open sea along
the active learning iterations.

Figure 5.26: Failure probability estimation with shutdown and wind from land along the
active learning iterations.
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Figure 5.27: Failure probability estimation without shutdown and wind from open sea along
the active learning iterations.
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Figure 5.28: Failure probability estimation without shutdown and wind from land along the
active learning iterations.
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Figure 5.29: Failure probability estimation with transient input wind along the active learn-
ing iterations.
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6 Application to Teesside case study and design opti-
mization

In this section, we consider an offshore fixed wind turbine of the Teesside wind farm of EDF
(UK) EDF (2014).

Two analyses are carried out on this case:
1. first, the sequential sampling described in section 4.1.3 is applied to estimate an ULS

failure probability of the wind turbine;
2. then, an optimization of the thickness of the monopile and tower is done to reduce

the manufacturing cost of the structure while satisfying several constraints that are
described in the dedicated section.

6.1 Case study presentation
The Teesside wind farm is composed of 27 Siemens SWT 2.3MW turbines and was com-
missioned in 2013, Figure 6.1. Each turbine of rotor diameter about 93m is mounted on
a steel foundation consisting of a conical steel transition piece (TP) section, with largest
diameter of 4.9m, grouted onto a cylindrical steel monopile section of 4.6m diameter, see
Figure 6.11. The steel material for monopile and TP is S355NL. It was assumed in this
work that the same steel was used for the tower of Teesside OWT. The yield stress depends
on the thickness, which gives a mean value of 315 MPa for the monopile and 335 MPa for
the tower.

Several aero-servo-hydro-elastic models (HAWC2, Deeplines WindT M and DIEGO) of
this OWT were built during WP1 of HIPERWIND, with a benchmark campaign comparing
successfully their results on various loading cases including irregular waves and turbulent
winds, and checking the controller behaviour in a wind step analysis. The soil-monopile
interface is not represented by the classical API p-y method Carswell et al. (2015) but with
a simpler equivalent stiffness 6x6 matrix. The latter takes into account the embedment
depth.

6.1.1 Failure probability

We recall that the ULS failure probability is defined as:

pf = Pζ,η(.,ξ),ν(.,ξ)

(
max
[0,∆T ]

s(t; ζ, η(., ξ), ν(., ξ) > ρ

)
(6.1)

where, for the Teesside case study:
• ∆T is equal to 10 minutes;
• ζ is a random variable representing the model uncertainties on the yaw misalignement

(i.e. the angle between the nacelle and the wind direction);
• ξ is a 5D random vector composed of the following random variables:

– Uhub: the mean wind speed at hub height;
– σhub: the temporal standard deviation of the wind speed at hub height;
– Hs: the significant waveheight;
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Figure 6.1: View of the turbines supported by monopiles of the Teesside wind farm, copy-
right EDF Renewables UK.

– Tp: the peak period;
– β: the wind-wave misalignment.

• η(., ξ) and ν(., ξ) represent respectively the ST sea elevation and wind velocity. They
are both time-dependent stationary GP parameterized respectively by (Hs, Tp) and
(Uhub, σhub);

• s is the von Mises stress of the monopile at the mudline and in parked (idling turbine)
condition. The choice of the quantity of interest is justified in section 6.2.

• ρ is the yield strength of the monopile and tower steel which is also considered
stochastic.

This selection of uncertainty aims at keeping important effects on ULS of this OWT
structure while reducing as much as possible the dimension of the reliability problem. For
instance, the wind and wave orientations are grouped in a single misalignement variable
thanks to the isotropy of the monopile foundation and as the turbine realigns with the
wind thanks to yaw bearing system. Similarly, several model uncertainties which have been
characterized in previous deliverables of HIPERWIND (e.g. wake model uncertainties in
Ardillon et al. (2022), hydrodynamics and aerodynamics model uncertainties in Peyrard
et al. (2022)) have not been selected, assuming they have smaller influence than the ones
listed above on ULS. This choice required to complete the scope with the project timeline
is worth to be reconsidered in future works to take advantage of these quantifications which
are an important result of HIPERWIND project.

Furthermore, as in Muskulus and Schafhirt (2015), an uncertainty scaling coefficient
(mean 1 and CoV 0.2) was also considered initially on each term of the matrix representing
the soil/monopile interface. This uncertainty is deemed to be significant to the difficulty of
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characterization of soil heterogeneity with geotechnical measurements Carswell et al. (2015).
The latter reference showed the importance of the embedment depth on the monopile SLS
bending. The equivalent stiffness matrix takes it into account, so that the scaling factor
uncertainty also represents its effect. Although this parameter is known to have a major
influence on the fatigue of monopile supported OWT, a simple parametric study suggests
it has small influence on the ULS for this case study as illustrated in Figure 6.2. In this
figure, the maxima of the von Mises stress at the mudline is computed considering all input
parameters at their mean values and then comparing to the case where each parameter is
at its mean value except one which takes the extreme values of its marginal distribution.
We see that the quantity of interest is not sensitive to the soil stiffness. Consequently, it
was decided to discard it in the reliable study detailed hereafter.

Figure 6.2: Parametric study of max von Mises stress (MPa) at mudline.

6.1.2 Distribution of the uncertainties

For this case, we consider two sectors of wind direction:
• one sector with a wind direction ∈ [0◦, 120◦] ∪ [330◦, 360◦] corresponding to wind

from open sea (with probability psea = 0.274);
• one sector with a wind direction ∈ (120◦, 330◦) corresponding to wind from land

(with probability pland = 0.726).
One pdf of ξ is fitted for each sector. The fitting method and the description of the

resulting distribution is given in Deliverable 2.3 of the Hiperwind project (Kelly and Vanem
(2022))).
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The failure probability is thus pf = pf |sea ×psea +pf |land ×pland where pf |sea and pf |land

are the ULS failure probability considering ξ respectively from the first and second sector.
Moreover, the marginal distribution of Uhub is truncated below 25m/s since the turbine

is in parked condition.
The yaw misalignment ζ is represented by a random variable following a uniform distri-

bution between [-8°,8°] (cf IEC 61400-1).
For the yield strength, a log-normal distribution with coefficient of variation 0.1 is chosen

to represent the uncertainties as proposed in Muskulus and Schafhirt (2015). The mean
of this variable depends on the material and the thickness of the monopile at the mudline.
Here the material is the steel S355NL which implies a mean of ρ at 315 MPa.

6.2 IEC 61400 Load Evaluation of the Teesside case
To ensure the reliability of an offshore wind turbine, the standard IEC 61400 IEC (2019b)
requires to run the wind turbine model for a list of operation and environmental configu-
rations called Design Load Case (DLC). In this section a full IEC 61400 Design Load Basis
(DLB) calculations is carried out for the Teesside turbine. This analysis allows us to identify
the most critical DLC.

Let us first indicate that only plasticity ULS at the tower basis and monopile at mudline
were considered as potential ULS. In addition to these two well known mechanisms, often
considered in the ULS reliability analyses of OWT supported on monopile, several other
limit states need to be checked to validate a design in a real industrial case (e.g. blade root
bending, top tower acceleration etc..). Our goal here is not to realize a complete industrial
design check and optimization, which would have been out of the scope of HIPERWIND
objectives, and would have required missing information on the structure. Our goal is
actually to demonstrate the feasibility of the new ULS reliability computation on a realistic
case, for which the two selected limit states are enough representative.

Figure 6.3 shows the von mises stress at the tower bottom for each DLC and Figure 6.4
shows the monopile stress at mudline. These figures are obtained using DTU’s simulator
(HAWC2). The 3.x and 6.x DLCs tend to give the highest loads. However, the controller
used for these simulations has not be tuned to give low loads in start-up and tends to
produce high rotor speeds in start-up. This can be seen in Figure 6.5. Additionally, some
of the waves generated for the 6.x DLC were not physical.

Indeed, the initial water depth configuration from HIPERWIND WP1 model setting
was chosen to be 12.5m. However, in WP2 characterization of the wind and wave joint
probability Kelly and Vanem (2022), the water depth considered was that of 15m where
the data were collected, at an ocean area outside Teesside. Note that in Kelly and Vanem
(2022) a truncation limit of 13m was computed for 15m water depth, following a breaking
wave criterion given by EDF R&D on Hs and Tp (i.e. Hs update when about 30% highest
waves of the sea states are identified as breaking).

This incompatibility issue was solved by updating the water depth of the model to 14.9m,
as this value is also found for turbine in the farm.

From EDF design analysis, the selected DLCs are in particular DLC1.3, DLC1.6 and
DLC6.1. The DLC6.2 with strong misalignement is consequently discarded in the following,
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Figure 6.3: Summary of tower stress from the IEC 61400 design load cases.
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Figure 6.4: Summary of monopile stress from the IEC 61400 design load cases.

Figure 6.5: Stress vs. max rotor speed in start-up.
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assuming the wind turbines are equipped with a power-backup for control and yaw system
in case of grid loss IEC (2019a).

Simulations were done with Deeplines WindT M on the updated case, with the 14.9m
water depth that is consistent with the given site data, and limiting the height of the waves
with the same breaking wave criterion discussed above. As for the previous case, see Figures
6.3 and 6.3, the largest von Mises stress was obtained on the monopile for DLC 6.1 (see
Figure 6.6) which corresponds to a wind turbine in non operating parked (idle) condition.
Therefore, only this configuration is considered for the computation of the critical failure
probability in this section.

Figure 6.6: Maxima of the von Mises stress at the bottom of the tower and the monopile
for the DLC 6.1 with Deeplines WindT M .

6.3 Evaluation of Initial Design ULS
The sequential sampling method introduced in section 4.1.3 is applied to estimate the
failure probability defined in equation (6.1). The configuration of the algorithm as well as
the result are described in this section.

6.3.1 Configuration

To estimate the failure probability, the sequential sampling is employed where:
• for the initial DoE a Latin Hypercube Sampling maximin Auffray et al. (2012) of 60

points is used to span the domain of (ξ, ζ);
• at each enrichment step, 60 enrichment points are added to the DoE;
• for each point of the DoE, 20 seeds are considered for the ST sea elevation and wind

processes.
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6.3.2 Results

Only one enrichment cycle is performed to obtain a sufficiently accurate estimation of the
failure probability resulting in 2400 simulations over which 153 crashed. The 2D projections
of the resulting Design of Experiments (DoE) is displayed in Figure 6.7.

Figure 6.7: 2D projection of the DoE used in the sequential sampling method

The evolution of the annual failure probability and the confidence interval is displayed
in Figure 6.8.

Figure 6.8: Evolution of the annual failure probability estimation with sequential sampling.

The sequential sampling method estimates the annual failure probability at 2.1 × 10−13

with the following 5%-95% confidence interval: [0.1 × 10−13, 7.4 × 10−13].
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6.4 Optimization of design
6.4.1 Presentation of the problem

From the analysis described in the previous section, it appears that the nominal design of the
considered Teesside turbine is conservative. In this section, the purpose is to reduce the mass
of the structure which reduces its manufacturing cost while ensuring several constraints.
To ensure manufacturability and weldability, the diameter to thickness ratio is contrained to
stay the same that in the initial design. The annual critical ULS failure probability must stay
below 10−4 after requirements of IEC (2019b); DNVGL (2018). The natural frequencies
of the tower must be at more than 15 % distance from the 3P rotor frequency to prevent
from resonance. Finally two buckling criteria are checked, a beam buckling Lloyd (2005)
and a shell buckling Eurocode (1993), like in the WISDEM optimisation software of NREL
NREL (2024); Dykes et al. (2014).

6.4.2 Design transformation

Since the thickness of the structure is the main driver of the total mass of the structure, we
consider it as the only design variable. To reduce the thickness, we propose to proceed as
follows. Let’s denote t1(ni) and D1(ni) respectively the nominal thickness and diameter at
at node ni of the structure. Let’s consider α a multiplicative coefficient, tα(ni) and Dα(ni)
the thickness and diameter of the new design at node ni considering α. To obtain these
quantities, we proceed as follows:

• if node ni is a node of the monopile or of the transition piece: tα(ni) = α × t1(ni)
and Dα(ni) = α×D1(ni);

• if node ni is on the tower: tα(ni) = cα(ni)×t1(ni) and Dα(ni) = cα ×D1(ni) where:
– cα(ni) = α at the bottom of the tower;
– cα(ni) varies from α to 1 along the tower;
– cα(ni) = 1 at the top of the tower.

Doing so, we can reduce the thickness of the structure while ensuring both that the diam-
eter/thickness ratio and the diameter of the tower top are conserved.

6.4.3 Mathematical formulation

The optimization problem we solve in this section writes:
minimize α

subject to : pyear
f (α) < 10−4

f(α) > 1.15 × f3P

cb(α) < 1

(6.2)

where pyear
f (α), f(α), cb(α) are respectively the critical annual ULS failure probability,

the smallest natural frequency of the tower and the buckling criterion considering the
transformation of the design using the coefficient α as described in section 6.4.2. Finally
f3P is 3 times the frequency of the rotor.

Notice that the buckling criterion depends on the loads applied to the structure and thus
for a complete probabilistic formulation of the constraints, this criterion should consider all
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the sources of uncertainties. To simplify the problem, this criterion is checked only for DLC
6.1.

The main difficulty to solve problem (6.2) is that at each iteration of the optimization
solver, we need to estimate pyear

f (α) which requires to use the sequential sampling method
and thus to perform a prohibitive number of simulations. To overcome this difficulty, we
propose a new approach which solves problem (6.2) using the simulations obtained from the
estimation of the failure probability of the initial design (cf section 6.3) and thus requiring
no additional simulation.

This approach is introduced in the next section.

6.4.4 Conservation of the moments and forces with design transformation

To solve problem (6.2), we use the fact that, for this case study and a given external
excitation (wind and waves), quantities such as the bending moments and shear forces,
throughout the structure, are preserved across a relatively wide range of diameter and
thickness. A physical reasoning supporting this observation could be that these quantities
are kept constant with (small) changes in the design, similarly to the forces within a simple
spring remains constant, even for different springs (what counts is the external loading).
In Figure 6.9, we compare the time series of bending moment at the bottom of the tower
and at the mudline considering the nominal design, a modified design with a reduction of
25% of the thickness and another design with a reduction of 10% of the diameter. The
results are displayed for two realizations of the LT and ST uncertainties (i.e. considering
two different loads on the structure). We see that the time series of bending moment are
not sensitive to the modification of the thickness and diameter of the structure.

The stress, on the other hand, depends explicitly on the geometry of the structure. For
a given external excitation, the relation between the time series of axial stress (σz), the
bending moment (M) and the tension (T ) at some location of the structure is given by:

σz(Dα, tα) = M
Dα

2I(Dα, tα) + T
1

A(Dα, tα) (6.3)

where the moment of inertia I(Dα, tα) and the area A(Dα, tα) depend on the local external
diameter Dα and thickness tα at the considered location as:

I(D, tα) = π

64(D4
α − (Dα − 2tα)4), A(Dα, tα) = π

4 (D2
α − (Dα − 2tα)2). (6.4)

Using this observation, it is possible to estimate pyear
f (α) (the failure probability consid-

ering a modified design) using the 2400 simulations done on the nominal design that were
carried out to estimate pyear

f (cf section 6.3). Indeed, for these simulations, the time series
of moments and tension are known. From the observation above, they are the same that
for a modified design. The stresses for the new design can thus be obtained with equation
(6.3) using the nominal moments and forces and the modified diameter and thickness. This
results in a new DoE. The estimation of the new failure probability pyear

f (α) is then done
using the kriging approach of section 4.1.3 without the enrichment step. This optimization
approach is summarized in Figure 6.10.
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(a) Time series of the bending moment for tower base (top) and
monopile at mudline (bottom) with U = 35m/s, TI = 11%, ζ = 0o,
β = 0o, Hs=13m, Tp=43s.

(b) Time series of the bending moment for tower base (top) and
monopile at mudline (bottom) with U = 35m/s, TI = 11%, ζ =
30o, β = 30o, Hs=13m, Tp=43s.

Figure 6.9: Time series of bending moments with diameter and thickness reduction
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Figure 6.10: Flowchart of the RBDO approach.

6.4.5 Optimization approach

To account for the approximation introduced by the method described in section 6.4.4 to
estimate pyear

f (α), the threshold of the annual failure probability for the first constraint in
problem (6.2) is lowered to 10−5. The 3P resonance is checked during the optimization by
means of a fast to compute modal analysis.

Moreover, the buckling constraint is only checked at the end of the optimization process
for the optimal solution to speed up the resolution. It becomes feasible to solve problem
(6.2) without dynamic simulation. This results in a 1D optimization problem that we solve
with the COBYLA solver (Powell (1994)).

6.4.6 Optimization result and verification

The result of the optimization is the new design displayed in Figure 6.11. In this figure,
the horizontal lines indicate the separation between the monopile, the transition piece and
the tower. The diameter of the initial design is indicated in blue lines while the red lines
represent the new design. The thickness of the structure is the distance between the lines
and the dotted lines (the thickness is multiplied by a factor 3 on the figure to distinguish
it).

This new design leads to a mass reduction of 21 % of the structure, where the limiting
criterion of the optimization is the resonance of the structure. The details of the mass
reduction for each part of the structure is given in Table 6.1. The failure probability at the
optimum is estimated at 2.2×10−9 with the approach described in section 6.4.4. We verify
this probability with the sequential sampling method on the simulator using the new design
and it gives a failure probability at 0.7×10−9 with a 90% confidence interval [5.4−11, 2.2−9].

To speed up the process, the buckle criterion was not integrated to the optimization but
is verified only for the optimal design on DLC 6.1. The results are shown in Figure 6.12
where we plot the utilization for each point of the tower of the optimal design. We see
that they are far from the unity utilization which means a safe design in term of buckling,
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Figure 6.11: Profiles of the nominal design and the new design (with normalized axes).

Part of the structure mass (initial design) [tons] mass (new design) [tons]
Monopile 71.62 55.76
MP+TP 226.52 176.34

Transition piece 139.62 108.69
Tower 139.31 114.10
Total 577.08 454.89

Table 6.1: Mass reduction for each part of the structure.

even considering a safety factor of 1.45.

6.5 Conclusions of the Teesside study
In this section, ULS was considered for both tower basis and monopile mudline plasticity.
The critical ULS for the Teesside case was identified from simulations of IEC 61400 Design
Load Basis to be found for von Mises stresses on monopile at mudline during DLC6.1
(parked idle configuration).

The sequential sampling method described in section 4.1.3 is then applied with success
to estimate the critical ULS failure probability with accuracy. This analysis confirms that
the nominal design is conservative which is mainly due to the fact that at the time of the
design, site specific conditions given by Kelly and Vanem (2022) were not available, hence
generic aerodynamic loads of turbine class were used.

To reduce the cost of the structure, a new optimization approach is introduced that
aims to reduce its mass with relatively few simulations while ensuring constraints on the
manufacturability, the critical reliable ULS, beam and shell buckling and 3P tower resonance.
As discussed in section 2, considering a reliable constraint in a design optimization of OWT is
highly challenging due to the computational cost of the failure probability evaluation. The
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Figure 6.12: Buckling utilization on the optimal design for both the shell and global criteria
from the DLC 6.1 (critical one) data.

new procedure proposed here for this monopile case study takes advantage of a relative
unchange of the bending moment of the tower when reducing the thickness. The thickness
change then only modifies the analytical relation between the bending moment and the
von Mises stress at the tower and monopile bottom, enabling an easy update of the failure
probability computation with the sequential sampling approach.

This results in a reduction of about four order of magnitude of the reliable ULS failure
probability, and 21% mass reduction of the structure, the limiting constraint for the design
being actually that of the 3P resonance.

It may be noticed that the failure probability that was considered during this optimization
was considering the most critical load case only. When estimating the failure probability,
one may actually prefer to compute a more representative estimate which includes both
operational and parked configurations each of them being weighted by the expected proba-
bility of occurrence. Such computation will be adopted in section 8.3 for the Teesside case,
see equation 8.6, the configuration occurrence being determined from the distribution of
the mean wind speed. As can be seen in this section, the resulting annual failure probability
would actually be smaller, as the parked configuration occurrence is less than that of the
operational configuration. We can thus consider our current choice to be conservative for
our example. Let us also emphasize that this choice has no consequence on the optimization
results, as the limiting criterion is actually the resonance one.
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7 Application to South Brittany case study
The exercise presented in the previous section for the Teesside case is repeated for a floating
offshore wind turbine located at the South Brittany site. The structure is based on the
IEA 15-MW NREL turbine (NREL (2020)) on the UMaine semi-submersible floater (Allen
et al. (2020)) which has been modified (tower and mooring) to be adapted to the South
Brittany conditions, see details in Peyrard et al. (2022); Capaldo et al. (2021) and a view
of the Deeplines WindT M implementation of this case in Figure 7.1.

Figure 7.1: 3D view of the IEA15MW on UMaine semi-submersible floater adapted to South
Brittany site in HIPERWIND, after Vanem et al. (2023).

7.1 Case study presentation
7.1.1 Failure probability

The failure probability for the South Brittany case has the same definition as for the Teesside
case (cf equation (6.1)) except for the following elements:

• ∆T is equal to 1 hour;
• we do not consider uncertainties on a model parameter (so there is no variable ζ);
• ξ is a 4D random vector composed of the following random variables:

– Uhub: the mean wind speed at hub height;
– σhub: the temporal standard deviation of the wind speed at hub height;
– Hs: the significant waveheight;
– Tp: the peak period;

The choice to reduce the dimension of the inputs is done to simplify the estimation
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of pf . The variables considered are those to which the quantity of interest s is most
sensitive.

• s is the von Mises stress at the tower bottom and in parked condition. Due to time
constraints, it was not possible to carry out a complete design load base (DLB) for
South Brittany. Based on the Teesside DLB, we assume the same critical DLC for
this case.

• ρ is the yield strength of the tower material.

7.1.2 Distribution of the uncertainties

The distribution of the LT parameters for South Brittany is detailed in Vanem et al. (2023).
The marginal distribution of Uhub is truncated below 25m/s since the turbine is in parked
condition.

For the random variable ρ, the material of tower is the steel S355NL and the thickness
at the bottom implies the same distribution that for the Teesside case: a lognormal normal
distribution with mean 315 MPa and coefficient of variation 0.1.

7.2 Evaluation of Initial Design ULS
The sequential sampling is now applied to South Brittany case described in section 7.1. For
the algorithm, the same configuration as for the Teesside is used here.

Three enrichment steps are necessary to obtain a sufficiently accurate estimation of pyear
f

resulting in 3250 simulations. The 2D projections of the resulting DoE is displayed in Figure
7.2.

Figure 7.2: 2D projection of the DoE used in the sequential sampling method.

The evolution of the annual failure probability and the confidence interval is displayed
in Figure 7.3.

The sequential sampling method estimates the annual failure probability at 3.7 × 10−5

with the following 90% confidence interval: [2.2 × 10−5, 5.8 × 10−5].

7.3 Discussions on Design Optimization
As seen in section 7.2, the critical ULS failure probability is at 3.7 × 10−5 which is already
close to the threshold 10−4. Consequently, it has been decided to not optimize the design.
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Figure 7.3: Evolution of the annual failure probability estimation with sequential sampling.

On top of the ULS failure probability, we check that the tension of the mooring line is
always positive for the DLC6.1 to avoid out-of-plan bending of the line, which would cause
the material to break under subsequent tensions. The minimum tension over the three
mooring lines for the DLC6.1 is at 8 × 105 Newton.

For what concern buckling check, we refer to Capaldo et al. (2021) which indicates
that the diameter to thickness ratio should prevent it. Indeed the two criteria used for
Teesside design do not take into account the accommodation of the aerodynamic thrust
by the floater motion. A detailed check would require a Finite Element analysis with the
equivalent stiffness of the floater and its mooring line at the tower basis, which was not
possible for lack of time.

The natural frequencies of the tower are also checked with a modal analysis. The
frequencies of the fore-aft and side-side modes are respectively at 0.456 Hz and 0.461 Hz
which is sufficiently far from the 3P of 0.378Hz to avoid resonance.

Besides, if the nominal design was conservative, the optimization approach used for the
Teesside case would not be possible here. Indeed, the method is based on the observation
detailed in section 6.4.4 that the time series of bending moment and forces are not sensitive
to a reduction of the thickness and diameter of the structure. For the floating case, this
observation does not stand. In Figure 7.4, we compare the bending moment of the nominal
and a modified design with a tower thickness and diameter reduced by 10% for two loads
and we see that the time series are clearly different. In the modified design, the mass of the
floater was also changed (assuming a change in the hydrodynamic ballast only) to avoid
recomputation of the hydrodynamic properties. The floater draft in hydrostatic is thus the
same that for the initial design. Also, to simplify the understanding, the center of gravity
of the floater was modified in order to preserve the total center of gravity of the structure.
This simplification may be replaced by a more physical design change, with explicit location
of the ballast.

The difference of bending moment illustrated in Figure 7.4 can be explained by the
change in the inertia contribution of the balance of momentum equation due to the mass
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distribution change between the RNA and turbine on one side and the floater with mooring
lines on the other side. This also causes differences in the floater motion, mainly in surge
component, which modifies the mooring lines tension distribution, see section 7.5.

Therefore, for a floating wind turbine optimization design, other approaches would need
to be considered such as a metamodel-based method considering the design parameters as
input of the metamodel.

(a) U = 27.1m/s, TI = 12.42%, ζ =
−0.02o, Hs=1.36m, Tp=13.61s, θwind =
79.34o, θwave = 225.4o.

(b) U = 37.14m/s, TI = 9.09%, ζ =
−0.02o, β = 30o, Hs=7.17m, Tp=13.61s,
θwind = 79.34o, θwave = 225.4o.

Figure 7.4: Comparison of the tower base bending moment time series with nominal and
modified designs.

7.4 Conclusions of the South Brittany study
The failure probability has been estimated with the DNV’s sequential sampling method. It
appears that the critical annual ULS failure probability is close to the threshold of 10−4

thus no optimization of the design was performed for this case. Let us however remind, like
in the conclusions of the Teesside study, that we could alternately have chosen to compute
a more representative annual failure probability considering both parked and operational
configuration each of them being weighted by their probability of occurrence. If the parked
configuration was actually providing higher loads, the resulting failure probability would
then have been smaller, which would have allowed for possible optimisation.

Moreover, it was noticed that contrarily to the Teesside case study, the bending moment
time series is significantly changing when modifying the tower thickness for this floating case
which may be explained by the change of inertia contribution in the balance of momentum
equation of the overall structure. Consequently, the optimization method introduced for
the Teesside case could not be applied here and a new method would need to be developed
to optimize the design of the structure without a prohibitive number of simulation. This
would for instance require to define meta-model of ULS vs tower thickness.
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(a) Pitch with LT parameters of the left pic-
ture of 7.4.

(b) Pitch with LT parameters of the right
picture of 7.4.

(c) Surge with LT parameters of the left pic-
ture of 7.4.

(d) Surge with LT parameters of the right
picture of 7.4.

Figure 7.5: Comparison of pitch and surge time series with nominal and modified designs
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8 Robustness of the failure probability to the environ-
mental parameter distribution

8.1 Problem statement
The failure probability estimation carried on in Section 6.1, relies on the probability distri-
butions estimated in Kelly and Vanem (2022) and Vanem et al. (2023). Because the latter
are determined on the basis of a finite dataset of LT parameters recorded over the span
of four years at the Teesside site, we expect them to be affected by epistemic uncertainty
following the fitting procedure.

In this section, we aim to perform a robustness/sensitivity analysis of the estimated ULS
probability of failure Pf , due to the uncertainty in the joint distribution of the vector of
environmental parameters ξ ∼ fξ(ξ). In other words, we see the estimated failure probability
as a random variable with unknown probability distribution, that we want to quantitatively
characterize.

8.1.1 Notation

As the topic requires a hefty amount of bookkeeping and different concepts, we introduce
here for reference the notation that will be used throughout this analysis.

• X = {ξ, ζ}, random vector comprising both the environmental random parameters
ξ, and the structural uncertain parameters ζ (see Section 6.1.1).

• fX(x) = fξ(ξ)fζ(ζ) - Reference joint distribution of the random vector X of un-
certain parameters. fξ(ξ) is the reference distribution calculated in Kelly and Vanem
(2022), while fζ(ζ) is given in Section 6.1.1.

• θ vector of hyperparameters of the joint distribution fξ(ξ). Depending on the param-
eterization of the latter, they can contain the parameters and types of the marginal
distributions ξi, those of the conditional distributions ξi|ξj

, any copulas, etc. When
needed in the text, we may also write the joint distribution of environmental param-
eters with an explicit dependence on the hyperparameters θ, as fξ|θ(ξ,θ).

• θ̂ - reference set of hyperparameters fitted in Kelly and Vanem (2022). It follows that
the reference joint distribution of environmental parameters is fξ(ξ) = fξ|θ(ξ, θ̂).

• fX|θ(x,θ) = fξ|θ(ξ, θ̂)fζ(ζ) - joint distribution of the LT uncertainty parameters X,
with the explicit dependence on the distribution on a given set of hyperparameters θ.

• ω - Latent variable representing the underlying state of randomness of the system,
often colloquially referred to as random seed. This is what causes failure within a
given set of parameters x

• y(x, ω) - Response quantity of interest (QoI) related to the limit-state under investi-
gation, e.g. von Mises stress at the tower base. For a given set of LT parameters x∗

and a single random seed ω̂, this is a deterministic scalar value.
• ρ - Critical maximum threshold related to the QoI y(x, ω). The system fails if
y(·) > ρ. For the sake of notation simplicity, we will omit explicit dependencies of ρ
in conditional expressions.

• Pf |x(x) - Conditional probability of failure given a single realization of X. It is
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defined as:
Pf |x(x) = Pω(y(x, ω) ≥ ρ) (8.1)

• Pf |θ(θ) - Conditional failure probability for a given set of hyperparameters θ:

Pf |θ(θ) = EX

[
Pf |x(x)

]
=
∫

ΩX

Pf |x(x)fX|θ(x,θ)dx (8.2)

• Pf - Reference probability of failure, corresponding to Pf = Pf |θ(θ̂)

8.1.2 Research question

Because the reference set of joint distribution parameters θ̂ in Teesside is estimated from
a finite dataset, it is expected to be uncertain. In other words, as is common in estimation
theory, each set of estimated parameters θ can be seen as a realization of an underlying
random variable Θ, with unknown joint probability distribution fΘ(θ). It is therefore
important to propagate such uncertainty to the estimated Pf , by providing a statistical
characterization of the distribution of fPf |θ(Pf |θ) (e.g. moments, confidence bounds, etc.).

This is a well posed problem, that can be seen as a classical forward uncertainty propa-
gation problem, using as a computational model Eq. (8.2), and as input the random vector
of hyperparameters Θ.

8.2 Methodology/Implementation
There are two steps involved in the uncertain propagation of Θ to Pf :

1. Estimation of the parametric uncertainty on Θ, and
2. Propagation of the parametric uncertainty to Pf |θ(θ).
The entire estimation process is performed directly by bootstrapping (Efron, 1979), the

estimator Pf |θ(θ) on the original Teesside dataset used in Kelly and Vanem (2022).

8.3 Step I: uncertainty estimation
We can observe from Eq. (8.2) that the value of Pf |θ(θ) is uniquely determined by the
set of environmental hyperparameters θ. Therefore, estimating the uncertainty of Pf via
MC simulation simply means generating a set of N realizations {θ(1), · · · ,θN} that is
consistent with the available data.

To achieve this, the raw Teesside dataset from Kelly and Vanem (2022), consisting of
approximately 200, 000 SCADA measurements of the five parameters in ξ, is first resampled
with replication through bootstrapping (Efron, 1979) a total of N times. Each replication
is subsequently fitted with a general mixed parametric and non-parametric joint distribution
based on the vine copula framework from Aas et al. (2009); Torre et al. (2019).

The inference algorithm has the following characteristics:
• Due to the relatively large size of the experimental design, all marginal distributions

are constructed non-parametrically through unbounded, Gaussian Kernel density es-
timation.
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• The dependence structure is determined through a fully automated vine-copula infer-
ence procedure (Torre et al., 2022), with the following candidate models:

– C- and D- vines
– free pair-copula ordering and structure
– Available pair-copula families: Student-t, Gaussian, Clayton, Gumbel, Frank,

Independent, including all allowed rotations.
– Selection criterion: Akaike information criterion (Akaike, 1973).

All calculations are performed with the statistical inference module of the general purpose
uncertainty quantification software UQLab (Marelli and Sudret, 2014; Torre et al., 2022).

Each run of the fitting process results in a set of hyperparameters θ(i), which we can
then use to evaluate two quantities that will be of interest in the next section: the joint
distribution f

(i)
X (x) def= fX(x,θ(i)), and the corresponding probability of failure P

(i)
f

def=
Pf |θ(θ(i)).

8.4 Step II: Propagation to the failure probability estimate
Calculating Pf (i) can be a computationally challenging process, and one that has already
been performed to calculate the reference results in Section 6.3.
A more efficient approach is therefore sought after, that can take advantage of the existing
calculations.

We therefore propose to use an approach that is derived directly from the importance
sampling literature (Melchers, 1989).

The estimation of Pf |θ from Eq. (8.2) consists of the following steps:
• A sample of uncertain parameters X =

{
x(i), k = 1, ..., Nx

}
is drawn from the

reference distribution fX(x)), with Nx ∼ O(104).
• For each set of LT and structural parameters x(i), multiple simulations with differ-

ent random seeds ω are solved with an aero-servo-elastic simulator (e.g. Deeplines
WindT M or HAWC2). The resulting set of QoIs are then processed through an adap-
tive Kriging-based probability estimation method, resulting in a set of conditional
failure probabilities, Pf =

{
Pf |x(x(i)), i = 1, · · · , Nx

}
.

• The integral in Eq. (8.2) is then simply estimated by averaging the conditional
Pf |x(x)’s over the sample:

Pf |θ(θ) ≈ 1
Nx

Nx∑
i=1

Pf |x(x(i)) (8.3)

Even though the calculation of each Pf |x(x(i)) has a limited computational cost, thanks
to the use of the Kriging surrogate model, the large number of evaluations needed to obtain
accurate results still makes this computation expensive. For the purposes of calculating
confidence bounds on the overall Pf , the entire process would need to be repeated for each
of the O(102) bootstrap replications of θ(i).

Thankfully, computational costs can be significantly reduced by simply reweighting the
elements of Pf with importance sampling, and directly approximating the expected value
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in Eq. (8.3), rather than repeating a different sampling for each θ(i).
Starting from the integral in Eq. (8.2), which depends on θ only by the joint PDF

fX|θ(x,θ), we can write:

Pf |θ(θ) =
∫

ΩX

Pf |x(x)fX|θ(x,θ)dx =
∫

ΩX

Pf |x(x)fX|θ(x,θ)
fX|θ(x, θ̂)

fX|θ(x, θ̂)dx, (8.4)

as long as fX|θ(x, θ̂) , 0 on the entire ΩX .
Eq. (8.4) is the basis of importance sampling methods, and it essentially means that we
can calculate the expectation in Eq. (8.3) w.r.t. fX|θ(x,θ), simply by re-weighting the
samples from the reference distribution fX(x) with the ratio of the two distributions, at
no additional cost.

In other words, if both the values of Pf |x(x) are available for all the points used to
calculate Pf |θ(θ) in Eq (8.3), and the corresponding values of both x(i) and fX(x(i)), no
additional calculation is needed to calculate the failure probability corresponding to any
given θ:

Pf |θ(θ) ∼ 1
N

N∑
i=1

Pf |x
(
x(i)

) fX|θ(x(i),θ)
fX(x(i)) . (8.5)

8.5 Results
Because the wind turbine under observation has two different working regimes: operational
and parked, two different failure probability analysis are performed. In particular, the limit
states that are activate in the two regimes are different, as the von Mises stress at the tower
bottom is dominant at the operational regimes, while the stress at the mudline is dominant
in parked conditions. Conventionally, the two regimes are classified based on the mean
windspeed U , with the turbine being operational in the interval 3m/s < Uhub < 25m/s,
and parked otherwise. Moreover, we assume that the the parked failure probability for
Uhub < 3m/s is negligible, and we therefore set it to zero in our analysis.

To perform this analysis, we use two separate datasets of conditional failure probabilities
calculated from the reference fX(x), depicted for reference in Figure 8.1. The operational
dataset consists of a total of Nx = 52, 534 samples of the original distribution fX(x) from
Kelly and Vanem (2022), while the parked dataset uses Nx = 52, 055 samples from the
same distribution, but conditioned on Uhub > 25m/s.

In both cases, a total of N = 250 bootstrap replications are performed on the original
Teesside dataset, hence resulting in the same number of conditional fX|θ(x,θ)’s, as well
failure probability estimates.

8.5.1 Operational failure results

The histogram of the estimated failure probabilities from the operational dataset is reported
in Figure 8.2. (note that the scale is logarithmic on the x−axis). The corresponding median
failure probability in operational conditions is then Pf = 3.8 · 10−21, with a 90% confidence
interval P op

f ∈ [1.9, 6.7] · 10−21.
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Figure 8.1: Distribution of the raw conditional probabilities used for the robustness analysis
in Section 8 in logarithmic scale for operational (blue) and parked (orange) regimes. The
left panel showcases the entire distribution, while the right panel focuses only on the upper
tail of the distributions, as it is the region that has the highest impact on the expected failure
probability in Eq. (8.3). Note that the dataset for parked regime sampled from a conditional
distribution with Uhub > 25m/s. Therefore, despite its overall higher failure probability, it
has minimal effect on the overall failure probability, because P(Uhub > 25m/s) ≈ 8 · 10−5

in Teesside.

8.5.2 Parked failure probability

Similarly, the histogram of the estimated failure probabilities from the parked dataset is
reported in Figure 8.3. The corresponding median failure probability in parked conditions
with Uhub > 25m/s is Pf = 3.9 · 10−18, with a 90% confidence interval P prk

f ∈ [1.7, 7.4] ·
10−18. As expected, the failure probability in this range is almost exactly 3 orders of
magnitude higher than that in operational conditions. Its confidence bounds are also slightly
larger, likely due to them belonging to a relatively far tail of the input distribution, less
constrained than other parts of the input domain. Nevertheless, due to the relatively low
probability of P(Uhub > 25m/s) < 10−4, it is expected that the impact of parked failure
will be minor on the total failure probability.

8.5.3 Combined failure probability

The combined failure probability of both operational and parked regimes is simply given by:

Pf = (1 − p) · P op
f + p · P prk

f , (8.6)

where p = P(Uhub > 25m/s) is the probability that Uhub > 25m/s. In the case of
Teesside, p ≈ 8 · 10−5 The histogram of the estimated failure probabilities from the parked
dataset is reported in Figure 8.4. The corresponding median combined failure probability
is Pf = 4.1 · 10−21, with a 90% confidence interval Pf ∈ [2.1, 7.1] · 10−21, slightly higher
than for the operational case.
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Figure 8.2: Distribution of the failure probabilities conditional on θ obtained from the
bootstrap estimates described in Section 8.3, for the operational regime. They correspond
to the weighted average of the Pf |x(x) shown in Figure 8.1, for each bootstrap replication
of θ (see Section 8.3 and Eq (8.5)).

.

8.6 Wrap up and discussion on the robustness analysis
Our robustness analysis showcases that the uncertainty on the joint model of the environ-
mental input parameters plays a significant role on the accuracy and confidence of the final
failure probability estimation. The results are summarized in Table 8.1. As expected, the

Table 8.1: Summary of the robustness analysis results on the failure probability at different
regimes

Regime Mean Std q50 (q5 − q95)
P op

f 4.0 × 10−21 1.5 × 10−21 3.8 (1.9 − 6.7) × 10−21

P prk
f 4.1 × 10−18 1.7 × 10−18 3.8 (1.7 − 7.4) × 10−18

Pf 4.3 × 10−21 1.5 × 10−21 4.1 (2.1 − 7.1) × 10−21

parking failure probability conditioned on Uhub > 25m/s shows both a higher failure prob-
ability and larger variability, which are slightly reflected in the combined failure probability.
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Figure 8.3: Distribution of the failure probabilities conditional on θ obtained from the
bootstrap estimates described in Section 8.3, for the parked regime. They correspond to
the weighted average of the Pf |x(x) shown in Figure 8.1, for each bootstrap replication of
θ (see Section 8.3 and Eq (8.5)).

.

Figure 8.4: Distribution of the failure probabilities conditional on θ obtained from the
bootstrap estimates described in Section 8.3, for the combined operational+parked case.
The effect of the parked regime is barely noticeable w.r.t. to the operational case in
Figure 8.2, because of the very low conditional probability of Uhub > 25m/s.
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9 Conclusions and perspectives
To leverage the use of reliability in the ULS design check of OWT, several methods have
been studied for computing the annual failure probability, taking into account the uncer-
tainty in the environmental (wind and wave) conditions, both in LT and ST parameters,
model uncertainty with yaw misalignement, and material resistance uncertainty. Follow-
ing international standard design basis classification IEC (2019b,a); DNVGL (2018), we
distinguished the case of stationary loading event and the case of transient events, the
latter including possible wind gust fitting real observations Kelly and Vanem (2022) and
grid loss. Two realistic case studies are considered. The first case study is inspired from
the OWT of Teesside wind farm of EDF in the West coast of UK. The 2.3MW turbine is
supported on a cylindrical monopile foundation. The second case study is composed of the
IEA15MW wind turbine supported on UMaine semi-submersible floater that is equipped
with 3 catenary mooring lines, as developed in Allen et al. (2020) and then modified during
HIPERWIND project, to be consistent with a site in South Brittany (West coast of France)
Capaldo et al. (2021); Peyrard et al. (2022).

For the case of stationary ULS, four methods have been compared on a simplified 2D
benchmark (in mean speed and turbulence space) with NREL 5MW wind turbine and the
auto-regressive mNARX surrogate developed in Dimitrov et al. (2022); Schär et al. (2023)
to replace the costly multiphysics simulator. The methods considered are environmental
contours, BNN, GP with sequential sampling and outcrossing optimisation in jointed LT and
ST spaces. The BNN approach did not succeed to compute accurately the annual failure
probability with a feasible computational time because of non-Gaussian tail distribution of
ULS. The outcrossing optimization could not converge in both ST and LT parametric space
probably because of unexpected complexity of the high dimension reliability problem which
limits the validity of FORM, with multiple non connected local minima. Another reason
which could explain this difficulty may be due to the lack of identifiability between the LT
and ST coefficients. Consequently, the only solution was to perform FORM for fixed LT
which would require to much computations in the end.

Fortunately, the GP with sequential sampling succeeded to converge in computing the
return value loads and annual failure probability with a small number of iterations. For a
given point of a DoE in LT space, this method computes the extreme quantity (maximum
of time series of load on OWT component) for multiple stochastic seeds accounting for the
wind turbulence and wave irregularity. Then it fits a Gumbel distribution to the maxima,
characterizing the ST failure conditional to LT parameters. Last, a GP of the Gumbel
parameters is computed in LT space which then allows to compute the LT failure probability.
This method is shown to provide similar loads than the Q90 environmental contour for
Teesside case study, while for the South-Brittany case study, the failure domain appears to
be located inside the contour. As South-Brittany case study in the 2D benchmark is just
changing the runtime of simulations (1h instead of 10min) and the joint wind parameter
distribution, the reason for this distribution of the failure domain was not identified. Also,
the convergence in failure probability is less good than for return value period and slightly
underestimates the value obtained with brute force sampling. This can be explained by
very few outliers points in the ST maxima significantly deviating from the fitted Gumbel
fit which we think are due to the use of mNARX out of its training domain and thus would
not occur when using a physical simulator of offshore wind turbine dynamics.
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For the case of transient ULS, a comparison of the observation-fitted gust with the IEC
EOG has shown that it is possible to find some correspondence after fitting of the gust
acceleration and rise-time parameters. An analysis of simulation results indicates that the
ST parameter influence on ULS is small, so that the ST uncertainty can be neglected by
considering only one stochastic seed. For the LT wind and wave parameters, augmented
by the gust and shutdown parameters, a massive MC sampling underlines the role of gust
acceleration in increasing significantly the loading when compared to the stationary ULS
in similar environment conditions. To reduce the computation cost of the MC sampling,
a method is presented which involves a GP surrogate that is enriched in several steps,
according to the SUR-Bichon active learning criterion of Duhamel et al. (2023).

When applying the methods to Teesside use case, the critical limit state were found to be
on monopile bending plasticity at mudline in extreme parked stationary condition. The GP
with sequential sampling method computed an annual failure probability of several order
magnitudes lower than the 1E-4 target of OWT design standards IEC (2019b); DNVGL
(2018). This conservatism motivated an optimisation of the design which founds a new
configuration with 21% mass reduction in tower and monopile and satisfies other design
criteria : buckling, tower resonance and manufacturability. The optimisation was possible
without additional simulations by taking advantage that the bending moments are not
significantly changed when reducing the tower and monopile thickness.

The same methods was also applied to South Brittany use case for computing the annual
probability of tower base bending plasticity. It was found to be close to the 1E-4 target so
that no optimisation with tower mass reduction was investigated.

Many perspectives can be suggested to this work. Firstly, additional work could be
done to address the limitations of the stationary ULS methods which did not succeeded to
converge efficiently. The limitation of BNN in predicting the ULS tail distribution could
be alleviated by replacing the Gaussian distribution choice with a more flexible one like the
Generalized Lambda distribution of Zhu and Sudret (2021). The limitation of the outcross-
ing optimization approach with FORM could also be alleviated by employing dimension
reduction techniques (see references in Breaz et al. (2024)). Despite the implementation of
the Gaussian process with sequential sampling method used in this work gave satisfaction,
it would be worth to check possible improvements for the ST asymptotic load analysis,
with strategies for de-clustering the local maxima (e.g. Block Maxima, Average Condi-
tional Exceedance Rates method of Naess and Gaidai (2009)) and other distributions for
load maxima, as documented in Dimitrov (2016).

Secondly, it could be interesting to work on a case study for which the transient event
is critical, for instance by reconsidering strong misalignement of DLC6.2 IEC (2019a). The
GP with active learning approach should be improved with a Bayesian subset simulation
strategy Bect et al. (2017) managing the possible failures of convergence of the simulator.

A third perspective of this work concerns the Teesside application. The demonstration
could be completed by considering additional limit states, both in terms of loading condition
and for the selection of the failure mechanism. Also, despite a considerable conservatism
found in HIPERWIND D4.3 for monopile fatigue on Teesside, it would be worth checking
that FLS constraint on monopile and tower base plasticity are still satisfied on the new
design obtained with mass reduction. In this optimization exercise, one may enlarge the
reliability constraints set by including FLS, using the same assumption that bending moment
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is preserved when reducing the tower and monopile thickness.
A fourth perspective concerns the floating South Brittany application. Like in the recent

work of Nielsen et al. (2023) based on IEC standard philosophy, we chose to compute
the annual failure probability for one DLC independently of the others, here the parked
configuration assumed to be the critical one, i.e. the one providing the most unacceptable
limit state function. We could however have chosen to compute a more representative
failure probability considering both operational and parked configurations, each of them
being weighted by their probability of occurrence like in equation 8.6 of section 8. If the
parked configuration was indeed the most critical one, the resulting probability would then
be smaller, allowing for possible optimisation. Furthermore, instead of the tower mass
reduction, one may also look at reducing the clump weights on the mooring lines (see
details in Peyrard et al. (2022)) and check that the tension on the mooring lines is still
positive in a probabilistic framework. As this tension will obviously change drastically when
reducing the clump weights, this will require to solve the challenging problem of defining a
surrogate model of this dependency.

Last but not least, it is worth mentioning that with the demonstration done in this work,
complementary work should be devoted to complete filling the TRL gap for using such
reliability approaches in future industrial OWT designs. This program requires collabora-
tive exchange between the researchers, the offshore wind farm operators and the standard
organizations to better identify the roadmap.
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A. Cousin, N. Delépine, M. Guiton, M. Munoz Zuniga, and T. Perdrizet. Optimal design of
experiments for computing the fatigue life of an offshore wind turbine based on stepwise
uncertainty reduction. Structural Safety, 2024. doi: doi:https://doi.org/10.1016/j.
strusafe.2024.102483.

N. Dimitrov. Comparative analysis of methods for modelling the short-term probabil-
ity distribution of extreme wind turbine loads. Wind Energy, 19(4):717–737, 2016.
doi: https://doi.org/10.1002/we.1861. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/we.1861.

N. Dimitrov. HiperSim. https://gitlab.windenergy.dtu.dk/HiperSim/hipersim, 2023.
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