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HIPERWIND 1 EXECUTIVE SUMMARY

1 Executive Summary
This report presents the results of Task 4.5 in the Hiperwind project, focusing on validating
surrogate models developed for wind turbine load predictions. The primary objective was to
improve the accuracy and reduce uncertainties in wind turbine design and operational predictions.
Specifically, the study investigated using Long Short-Term Memory (LSTM) and Gaussian Process
(GP) models to predict wind turbine loads, comparing models trained on simulated data with
those using real-world field measurements.

Key findings of the report include:
• LSTM Models: These models were tested using both simulated and field data to predict

fore-aft tower base bending moments. Simulation-based models provided higher prediction
accuracy due to the absence of measurement uncertainties inherent in field data. However,
models using field data showed improved accuracy with increasing amounts of real-world
data, though performance gains plateaued after a certain threshold.

• Gaussian Process Models: GP models effectively predicted the mean bending moment
but struggled with accurately predicting maximum moments. The models showed high
predictivity for mean bending moment estimation but exhibited limitations in high-stress
scenarios.

• Model Updating: The report explored how combining simulated data with field measure-
ments could improve model accuracy. Results showed that transferring models trained on
simulations to real-world scenarios is promising. However, the achieved prediction accura-
cies were not satisfactory, primarily due to differences in data correlation patterns between
simulated and field conditions. Retraining models with small amounts of field data improved
prediction accuracy in some cases, underlining the potential of combined use simulated and
field data for virtual sensing.

Overall, the findings highlight the potential of surrogate modeling techniques, such as LSTM
and GP, to reduce uncertainties in wind turbine load predictions. However, challenges remain
in integrating simulation and field data. Further refinement of these techniques is required to
achieve consistent improvements in predictive accuracy across varied operational conditions.
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2 Introduction and problem formulation
Wind turbine loads are a key factor in wind turbine design and operations. Fatigue and extreme
load estimations are necessary for design integrity assessment during the wind turbine development
stage, and are typically carried out using numerical simulations. And for existing assets, the actual
fatigue damage accumulated in the structure over its lifetime is one of the primary criteria that
can determine whether life extension is feasible. As the majority of existing assets do not have
continuous load measurement history, remaining lifetime estimation will typically require numerical
load simulations combined with an assessment of the site-specific environmental conditions and
wind turbine operation patterns (Dimitrov and Natarajan, 2019).

Load simulation tools such as Hawc2, Diego or DeeplinesWindTM are rigorously validated in
order to ensure that they can provide adequate design loads assessment. Nevertheless, there are
several uncertainties associated with using a model. For a quantity y that we want to predict based
on some measured inputs X (e.g., environmental inputs such as mean wind speed), we may build
a model g(X) that should map the relationship between X and y. Equation 2.1 outlines the types
of uncertainties associated with such a model setup. First, the model inputs may be uncertain -
there could be measurement uncertainty, or the quantities may not be fully observable, such as
for example the spatial- and time- average of the wind speed over the entire domain which is a
typical simulation input but can’t be measured in such details. These uncertainties are denoted
by εX . Another factor, the model uncertainty εg, represents the inaccuracies of the mapping
function due to e.g. imperfect parameterization or not sufficiently capturing the problem physics.
Finally, if we are comparing the model predictions to a measured value ŷ, this may differ from
the true quantity y due to the presence of measurement uncertainty, εy

y = (ŷ + εy) = g(X + εX) + εg (2.1)

Despite not being as expensive as for example time-domain CFD simulations, aeroelastic load
simulations still require a fairly large amount of computations. It is therefore common to replace
the aeroelastic tool by a simpler and more computational efficient map of its behavior, a so-called
surrogate model, which is typically a regression model. The surrogate model receives a subset
of X as inputs, H ⊂ X, and estimates the output of the full-fidelity model. Denoting the true
model output by ỹ = g(X), and the surrogate model as q(H) the surrogate model equation can
be defined as

ỹ = q(H) + εq (2.2)
By approximating the aeroelastic model predictions with a surrogate model, we are introducing
an additional uncertainty, εq, due to the model error of the surrogate model itself. Therefore,
when we predict a real quantity by running a surrogate model, our estimate is subject to both
the aeroelastic model uncertainty, and the surrogate model uncertainty.

The model uncertainties εg and εq are both epistemic in nature and could be reduced with
improved state of knowledge, e.g., by improving the model accuracy. One potential way of
obtaining a surrogate model with higher performance in predicting real data is to train the model
directly on measurements. While this completely eliminates the numerical model uncertainty
εg, it can potentially lead to higher statistical uncertainty (part of εq) due to limitations in the
measurements. This can also lead to the model not being able to generalize well, as the finite
amount of observations will rarely cover the entire range of variation of the input variables.

The aims of the present report are to:

2



HIPERWIND 2 INTRODUCTION AND PROBLEM FORMULATION

• Evaluate the performance of surrogate modelling methodologies utilized in the Hiperwind
project (as discussed in cite D4.1, D4.2, D4.3) in predicting real-world wind turbine load
measurements

• Study model parameter updating as means of reducing model uncertainty
• A secondary aim is to investigate ways for data pre-processing for comparison of time series

models considering sensor alignment between field and simulation setups.

3



HIPERWIND 3 DATA DESCRIPTION

3 Data description
The load prediction models in this task are developed based on simulated and measured turbine
load data from a field measurement campaign. This section describes the measurement campaign
in detail.

Figure 3.1: Layout of the Teesside wind farm

The Teesside wind farm is an offshore wind farm located in the North Sea, close to the east
coast of the UK. It is comprised of 27 Siemens 2.3 MW turbines. Figure 3.1 shows the layout
of the Teesside wind farm. The data used in this task originates from Turbine 13 and comprises
a total length of one month (November 2020). The available measurements include SCADA
and load signals. All the signals used in this task for model training and testing as well as data
pre-processing are summarized in table 3.1.

The strain sensors given in table 3.1 are placed around the circumference of the transition
piece according to figure 3.2 at height of 4.92 meters above LAT (Lowest Astronomical Tide).
The acceleration and inclination sensors are located at the same height in the transition piece
while the -X axis points in the north direction and -Y in the east direction.

To provide an overview of the operating conditions present during the measurement campaign,
wind speed and wind direction estimations are extracted from the SCADA data using nacelle-
based sensors (nacelle wind speed and nacelle orientation respectively). Figure 3.3 shows a wind
rose extracted from the SCADA data. It can be seen that the prevailing wind direction is South-
West with wind speeds between 0 and 30 m/s occuring during the measurment period. This
implies that the A-SG-135 and A-SG-315 sensors measure mostly strain in the side-side direction
(assuming that the turbine rotor is always facing the wind), while the T-SG sensor is well aligned
with the fore-aft direction.

Figure 3.4 shows the relative distribution of wind speeds and time series plot of the wind speed

4



HIPERWIND 3 DATA DESCRIPTION

Table 3.1: SCADA, load sensors and dynamics measurements T13
Data Channel Sampling Freq. Unit

SCADA
Wind Direction 10 min [deg]

Wind Speed 10 min [m/s]

Strain
Measurements

A-SG-315 20 Hz microstrain
A-SG-135 20 Hz microstrain
T-SG-30-1 20 Hz microstrain
T-SG-210-1 20 Hz microstrain
T-SG-60-1 20 Hz microstrain
T-SG-240-1 20 Hz microstrain

Dynamics
Measurements

ACC-X-1 20 Hz [m/s2]
ACC-X-1 20 Hz [m/s2]
INC-X-1 20 Hz [deg]
INC-Y-1 20 Hz [deg]

throughout the measurement campaign.

5
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Figure 3.2: Strain measurements sensor placement

Figure 3.3: Left: Wind rose Teesside, T13. Right: Relative occurrence frequency of wind
directions Teesside, T13
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Figure 3.4: Left: Histogram of nacelle wind speeds during measurement campaign. Right: Time
series of nacelle wind speed measurement during measurement campaign.

7
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4 Methodology

4.1 Load simulations setup
The surrogate models discussed in this report were originally developed as part of Hiperwind
Deliverable 4.1 (Dimitrov et al., 2022). As a result, we are using the same aeroelastic model
setup and the same input sampling space for training the simulation-based surrogates. Below,
the description of the sampling procedure is repeated from Deliverable 4.1 for completeness.

The IEC 61400-1 design standard provides a reference definition of the scenarios and the en-
vironmental conditions to be used for wind turbine design. For onshore sites, the major driving
environmental factors are the wind speed and the turbulence, characterized by a joint probability
distribution. Wind shear is also considered - defined as an exponential function with a determin-
istic exponent (either 0.11 or 0.2). When addressing site-specific problems, additional variables
or more detailed modelling of a given variable may come into play depending on the specific con-
ditions at the site. As a realistic use case, we choose four environmental variables: wind speed,
turbulence, wind shear and air density. The joint distribution of wind speed vs. turbulence is as
defined by the IEC61400-1 standard, while the wind shear is taken as conditional on wind speed
using the formula defined in (Dimitrov, et al., 2015). Air density is considered independent and
following a Gaussian distribution. The exact distribution parameters are outlined below.

• Wind speed u: a truncated Weibull distribution with parameters A=11.28 and k=2, and
bounded between the cut-in and cut-out wind speed of the turbine under consideration.
The Weibull distribution parameters correspond to IEC wind speed class I (mean wind speed
of 10m/s).

• Turbulence σu: the standard deviation of wind speed, σu, is considered Lognormally dis-
tributed, conditional on the wind speed. The mean and standard deviation of the lognormal
distribution are defined with the formulas µσu |u = 0.14(0.75u+ 3.8) and σσu = 1.4 · 0.14,
respectively, which corresponds to IEC turbulence class B.

• Wind shear exponent α: considered Gaussian, with mean and standard deviation conditional
on the wind speed: µα|u = 0.088(ln(u) − 1) and σα|u = 1/u, respectively. This is the
expression recommended by (Dimitrov, et al., 2015), (Kelly, et al., 2014).

• Air density ρ: independent Gaussian with mean 1.225 and standard deviation of 0.05.
A total of 2,000 random samples are generated from the above distributions. The sample

generation is done in a two steps process: 1) a set of uniform, i.i.d. variables ranging from 0 to 1
is drawn from a Halton quasi-random sequence, and 2) the physical values with the correct joint
distribution are obtained by a Rosenblatt transformation. The resulting dataset is visualized in
Figure 4.1.

Based on the above design of experiment, 2000 load simulations are carried out on a model of
the Teesside offshore wind turbine using the Hawc2 aeroelastic simulation tool. All simulations
are with 10-minute duration and represent operation under normal (power production) conditions.

8
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Figure 4.1: Scatter plots of the environmental condition distributions – used as load simulation
and surrogate model inputs. Top left: wind speed histogram. Top right: turbulence as function
of wind speed. Bottom left: wind shear exponent vs. wind speed. Bottom right: Air density vs.
wind speed. Figure taken from Hiperwind D4.1 (Dimitrov et al., 2022)
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4.2 Conversion of section strains to loads
In order to complete the primary goals of the study, an additional challenge that needs to be
resolved is how to adequately compare the outputs of models trained on simulations and the actual
measurements. The typical outputs of aeroelastic models are given in terms of forces and bending
moments on cross section level, while the load measurements are obtained in terms of strains.
Therefore, the strain measurements from the field measurement campaign are converted into
tower bending moments, using information about the tower geometry and material characteristics.

Since the calibration factors of the strain gauge measurements were not known, the offset
of each strain pair of strain sensors was found manually. This was performed by filtering the
strain measurement for wind aligning with the orientation of the sensors and assuming that the
combined bending strain of the pair should be close to zero for wind speeds below 4 m/s. The
combined bending strain for for each sensor pair is then shifted by the found offset. Following
this correction of strain measurements the strains are converted into bending stresses by:

σ = ET ower · ϵ
106 (4.1)

where σ is the resulting stress, Etower is the young’s modulus and ϵ is the strain.
The resulting bending stresses are then converted into bending moments by:

M = σ · 2 · Itower

dtower

(4.2)
.
IT ower is the tower’s moment of inertia and is calculated by:

IT ower = π

64
(
tower4

d − (towerd − 2 · towert)4
)

(4.3)

As the tower bending moments from the aero-elastic simulations are given as fore-aft and
side-side bending moments relative to the nacelle’s yaw position, the measured bending moments
are also converted to fore-aft and side-side bending moments. This is done by projecting the
calculated bending moments to a nacelle fixed coordinate system considering the nacelle position
information from the available SCADA data. The tower characteristics used for converting strains
to loads are summarized in table 4.1. A sketch of the bending moments distributions as function
of wind speed is shown in Figure 4.2. As expected, the field moments calculated from the field
measurements show higher variability than simulation results. However, the order of magnitude,
and main correlation patterns with wind speed are matched.

Table 4.1: Turbine tower characteristics
Parameter Value

Tower diameter 4.25 [m]
Wall thickness 0.08 [m]

Young’s modulus 210e9 [Pa]

10
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Figure 4.2: Normalized fore-aft and side-side bending moment after sensor offset correction and
coordinate transformation.

4.3 LSTM-based time series models
4.3.1 Model definition

LSTM networks represent a specific form of recurrent artificial neural networks, which have
remarkably succeeded in capturing temporal dependencies within input data.

What sets LSTMs apart is their use of memory cells, which allow them to retain or forget
previous inputs selectively over extended periods. These memory cells store information across
multiple time steps, which helps preserve important context over time. Additionally, LSTMs
feature a gating mechanism that controls the flow of information between cells, enabling the
model to decide which information is relevant, should be kept, and which can be discarded. This
selective retention makes LSTMs more effective than traditional neural networks when dealing
with time-dependent correlations in data. As this type of correlation can be expected between
tower inclinations, accelerations and bending moments, LSTM networks have been selected for
this task. The effectiveness of LSTM models for prediction of wind turbine loads and dynamics
has been demonstrated e.g. in Gräfe et al. (2024), Gräfe et al. (2024) and Dimitrov and Göçmen
(2022).

The LSTM network structure used in this task comprises 6 layers as depicted in figure 4.3.
The window size defines the number of timesteps in the input features. Predictions are made for
the same number of target time series time steps, while no forecasts into the future are made.
The window size used in this task was determined by a hyperparameter tuning process and is
set to 50. Considering the data sampling frequency of 10 Hz, this represents a time window
of 5 seconds. For visualization, the predicted windows are concatenated to 600 second time
windows. Predictions are made in succession while remembering the LSTM cell states for each
sub-sequence. Details about the used model hyperparameters are given in table 4.2.

The input and target features used for the simulation and field data based models are sum-
marized in 4.3. The acceleration and inclination signals are used as inputs in all three modeling
cases, while predictions are made for the fore-aft bending moment of the tower. The three cases
are distinguished by their use of input data sets. The ”Field” model uses only data from the
measurement campaign for training and testing, while the ”Sim” model uses only data from the
aeroelastic simulations for training and testing. In contrast, the ”update” model uses both the
field and the simulation data for model training.

11
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Table 4.2: Model Hyperparameters.
Hyperparameter Value

Number of LSTM layers 1
Number of LSTM units per layer 100

Window length 50
Number of units in fully connected layer 100

Dropout rate 0.1
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Figure 4.3: LSTM model architecture Gräfe et al. (2024)

Table 4.3: Summary of modeling cases for simulation and field data based models.
Feature SimA SimB SimC

state acc x ✓ x ✓

state acc y ✓ x ✓

eulerang x ✓ ✓ x
eulerang y ✓ ✓ x
Feature FieldA FieldB FieldC
ACC-X ✓ x ✓

ACC-Y ✓ x ✓

INC-X ✓ ✓ x
INC-Y ✓ ✓ x

Different cases corresponding to the individual modeling cases are evaluated in the model
updating step. First, the transferability of the simulation-based models is tested. Here, the
simulation-based models are tested on field input and targets. For the model update, the
simulation-based models are first retrained on field data following the testing on field data.
The investigated cases are summarized in table 4.4

The time series prediction models in this task are evaluated using the RMSEN (Root Mean
Squared Error Normalized) metric. The RMSEN represents the root mean squared error between
the predicted time series Ypred and the actual target time series Y , normalized by the standard

12
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Table 4.4: Summary of modeling cases for model updating.
Feature TransferA TransferC TransferC
ACC-X ✓ x ✓

ACC-Y ✓ x ✓

INC-X ✓ ✓ x
INC-Y ✓ ✓ x
Feature UpdateA UpdateB UpdateC
ACC-X ✓ x ✓

ACC-Y ✓ x ✓

INC-X ✓ ✓ x
INC-Y ✓ ✓ x

deviation σy of the reference time series. The formula for RMSEN is given in equation 4.4.

RMSEN = 1
σy

√∑N
i=1(Ypred − Y )2

N
(4.4)

In this equation, Ypred refers to the predicted values, Y represents the actual reference values,
and N indicates the total number of data points in the sequence.

4.3.2 Data preparation and analysis

This task’s training testing and validation data originates from field measurements (SCADA and
strain sensors) and simulations. The task’s scope is to train prediction models on both data sets
and eventually use field measurements to update models trained on the simulation data with field
measurements. Both data sets have been downsampled to a sampling rate of 10 Hz to enable
this combination of data sets. The field measurement data set has been divided into 10 batches
of data while the influence of the used amount of training data on the prediction accuracy is
investigated and presented in the results.

Figure 4.4 compares simulated and measured acceleration signals. Similar to the bending
moments, the acceleration signals from the measurements have been projected to the fore-aft
and side-side directions, considering the yaw position of the nacelle. This step is necessary to make
signals comparable between simulation and field measurements as the x- and y- accelerations in
the simulation data always represent the fore-aft and side-side direction respectively. In the field
data the fore-aft and side-side directions changes depending on the orientation of the nacelle.
Additionally the units of acceleration signals have beeen converted from g to m/s2. While both
signals show the same order of magnitude and zero mean characteristics, it can be seen that the
simulation data shows a lower standard deviation. The power spectral density plot shows that
both data sets show a similar frequency content. The comparison of the y- y-acceleration signal
is not presented here but shows similar behavior.

Figure 4.5 compares inclination signals between simulation and field measurements. As for
the acceleration signals, the inclination signals of the from the field measurements have been

13
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Figure 4.4: Comparison of acceleration signals. Blue: simulation data. Green: Field data

converted to fore-aft and side-side directions. The simulation heavily underestimates the variation
of the inclination and does not show similarity in scale to the field data. This is also true for
the y-acceleration signals. However simulated and measured signal show similar trends relative
to the ambient (nacelle) wind speed (see figure 4.6). While measured and simulated values are
on a different scale, both show a similar relationship to the wind speed and the related rotor
thrust force, indicating that both signals can serve as input features for time series model after
standardization.

Figure 4.7 shows the comparison for the fore-aft bending moment, which is used as the target
feature for the time series predictions in this task. It can be seen, that simulation and field
data show very similar characteristics in distribution and frequency content. Figure 4.8 shows
equivalent findings for the side-side bending moments.

In conclusion, the comparison of simulated and field data shows that the acceleration, incli-
nation and bending moment signals show similar characteristics, which might enable a transfer
of models from simulation to field data after standardization.

14
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Figure 4.5: Comparison of inclination signals. Blue: simulation data. Green: Field data

Figure 4.6: Fore-aft inclination of simulation (left) and field (right) relative to wind speed.
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Figure 4.7: Comparison of fore-aft bending moment. Blue: simulation data. Green: Field data

Figure 4.8: Comparison of side-side bending moment. Blue: simulation data. Green: Field data

16
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4.4 Gaussian process modeling with functional inputs
4.4.1 Problem formulation

We model the virtual sensor by a function f : V → R where V is the functional space in which
the random process V takes its values.

4.4.2 Random process finite dimensional representation

Let (Ω,F ,P) be a probability space. We assume that the random process V belongs to H =
L2(Ω,F ,P; V) with

V =

V : [0, T ] → R, ||V|| = (< v, v >)1/2 =
(∫ T

0
V(t)2dt

)1/2

< +∞

 .
We assume that V ∈ H has zero mean and continuous covariance function C(t, s). Then

∀t ∈ [0, T ], V(t) =
∞∑

i=1
Uiψi(t), (4.5)

where {ψi}∞
i=1 is an orthonormal basis of eigenfunctions of the integral operator corresponding

to C such that:
λiψi(t) =

∫ T

0
C(t, s)ψi(s)ds, (4.6)

and with {Ui}∞
i=1 denoting a set of uncorrelated random variables with zero mean and variance

λi. Decomposition (4.5) is known as the Karhunen-Loève (KL) expansion of V (Le Mâıtre and
Knio (2010)). In the following we denote the truncated version of V as Vm:

∀t ∈ [0, T ], Vm(t) =
m∑

i=1
Uiψi(t), (4.7)

which represents, in the mean square error sense, the optimal m-term approximation of V (Le
Mâıtre and Knio (2010)). The value of the parameter m should be chosen such that the approx-
imation is accurate enough.

Computational details of functional PCA In practice, the covariance structure of the process
V might be unknown and has to be estimated from the data. More precisely, C(s, t) can be
estimated from the sample {v(1), . . . ,v(n)} by:

Ĉ(t, s) = 1
n

n∑
i=1

v(i)(t)v(i)(s). (4.8)

The eigenvalue problem defined by Eq. (4.6) is then solved by replacing C by Ĉ (see, Cardot
et al. (1999) for convergence results). That approximated eigenvalue problem can be solved by
discretizing the trajectories at several discrete time points t1, . . . , tNT

. This yields the matrix of n
discretized trajectories V ∈ Mn,NT

(R) wih vi,j = [v(i)(tj)] for all i = 1, . . . , n and j = 1, . . . , NT .
It leads to the empirical covariance matrix defined as Ĉn = 1

n
V⊺V ∈ MNT ,NT

(R). We then have
to solve a classical multivariate PCA with NT variables given by a sample of size n. Other
approaches to implement functional PCA can be found in the literature. In (Ramsay (2006)),
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e.g., the authors propose to expand the curves as linear combinations of spline basis functions,
and to apply PCA to the coefficients of the curves on the spline basis. There also exist different
criteria for the choice of the truncation argument m (Jackson (1993)). One can cite the Kaiser-
Guttman criterion which consists of choosing the first components with eigenvalues higher than
1. Instead of using the variance provided by λ, the choice of m could be based on the “percentage
of variance” given by the ratio λm/

∑n
i=1 λi. By this way, we choose q so that the cumulated

ratio of variance explained by the first components exceeds a given threshold. Alternatively, to
avoid the arbitrary choice of the threshold, the eigenvalues are often displayed in a downward
curve and m is chosen according to the stagnation of the slope.

4.4.3 Gaussian Process modeling

In the following, we model f as a realization of a Gaussian Process Fu defined on Rm (Rasmussen
and Williams (2006)), where u = (< v, ψ1 > · · · < v, ψm >)⊺. Let mF be the mean function of
Fu and kF its covariance function,

E[Fu] = mF (u),
Cov(Fu, Fu′) = kF (u,u′).

(4.9)

Let us denote F (n), the Gaussian process F conditioned on the set of n observations Fn =
{f(v(1)), . . . , f(v(n))} of F at Un = {u(1), . . . ,u(n)} where u(•) = (< v(•), ψ1 > · · · <
v(•), ψm >)⊺ is the projection of the observation v(•) on the m-dimensional truncated space
given by Karhunen-Loève expansion (Eq. (4.5))

F (n)
u = [Fu|FUn = Fn]. (4.10)

The mean and covariance of F n are given by

E[F (n)
u ] = mF (u) + kF (u,Un)Σ−1

F,n(F −mF (Un)),
Cov(F (n)

u , F
(n)
u′ ) = kF (u,u′) − kF (u,Un)Σ−1

F,nkF (Un,u′).

where ΣF,n = kF (Un,Un). The next section will cover the preparation steps for sensor-derived
time series data.

4.4.4 Data preparation

Time series Preparing time series data involves two essential steps. First, the data is downsam-
pled from 20Hz to 1Hz, reducing the number of data points while preserving critical information.
This step is important for making the dataset more manageable and matching the desired tem-
poral resolution. Second, the time series is denoised using a Kalman filter (KF) method, an
unsupervised algorithm that tracks a single object in continuous state space. By processing noisy
measurements, the Kalman filter can estimate the ”true state” of the object being tracked. Its
strength lies in effectively handling noisy data, providing a clearer signal. However, the algo-
rithm has some drawbacks. Its computational complexity increases cubically with the size of the
state space, reducing efficiency for larger systems. Additionally, parameter optimization using
the Expectation-Maximization (EM) algorithm is a non-convex problem, often leading to conver-
gence at local optima rather than the global optimum. To address this issue, we use multistart, a
technique employed to improve the chances of finding a global optimum solution. This approach
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involves running an optimization algorithm multiple times, but starting from different initial
points. In this work, we used the KalmanFilter class and the EM algorithm KalmanFilter.em
from the python library pykalman. Figure 4.9 illustrates the result of KF-based denoising applied
to a noisy signal.

Figure 4.9: An example of Kalman-filter denoising signal. The noisy signal (green curve) and the
KF-based denoised signal (in blue).

Scalar outputs Regarding the outputs of interest, we will focus on the maximum and the
1-hour average of the time series of the bending moments.

4.4.5 Gaussian process model trained on data

This study considers four functional inputs: accelerations and inclinations in the X and Y direc-
tions. To build the metamodel, we begin by reducing the dimensionality of the functional inputs
through projection into a lower-dimensional space, using the decomposition described in Section
4.4.2. The Gaussian process model will then be constructed based on the coefficients obtained
from this decomposition (refer to Section 4.4.3).

i) Defining the truncation parameter for the KL expansion We apply a dimensionality
reduction technique and determine the optimal truncation parameter m for each of the four
inputs. As indicated in Table 4.5, with m = 4, more than 99% of the variance in the X and
Y inclinations can be captured. For the accelerations, setting m = 3 is sufficient to achieve
a high explained variance ratio. Consequently, the functional inputs can be represented by a
14-dimensional vector variable.

ii) Gaussian process models We consider a Gaussian Process prior with constant mean func-
tion and Matérn covariance kernel with ν = 5/2. The covariance kernel hyper-parameters are
estimated by maximizing the likelihood, and all computations are performed using the Python
library smt. The dataset is split into training and testing sets in which the 70% of data points
are allocated as the training set and the 30% as the testing set. All the target variables are
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m = 1 m = 2 m = 3 m = 4
Inclinaison-X 93.9% 96.94% 98.2% 98.83%
Inclinaison-Y 95.69% 97.84% 98.65% 99.04%
Acceleration-X 98.36% 99.18% 99.5% 99.64%
Acceleration-Y 96.54% 98.38% 99.10% 99.44%

Table 4.5: The explained variance according to the truncation argument m for the four different
functional inputs.

standardized to have 0 mean and unit variance according to the training set, while the same
factors scale the testing set.
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5 Results from time series predictions

5.1 Time series surrogate models trained on simulation data and mea-
sured time series

This section presents the results from the ”Field” and ”Sim” time series prediction models. Both
models input acceleration and inclination signals from the respective data sets and predict the
fore-aft tower bending moment, respectively. Figure 5.1 shows one time series example of a
predicted 600-second time series for both models for case A. Additionally, the power spectral
density of the predicted and reference values is shown. For the simulated data set, the predicted
time series follows the reference signal accurately. For the field data, the model predicts low-
frequency variation correctly, while higher-frequency fluctuations in the signal is not captured
accurately. The comparison of the power spectral density plots also confirms this. While the
simulation model accurately captures frequencies up to 2 Hz, the field model can only capture
lower frequencies up to approximately 1Hz.
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Figure 5.1: Example of time series prediction from field and simulation model, case A

Figure 5.2 summarizes the achieved prediction accuracies for case A for both models. In each
boxplot, the box’s lower and upper edges correspond to the data’s 25th and 75th percentiles,
respectively. The median of the samples is shown as a horizontal line inside the box. Data points
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represented as circles are considered outliers, falling more than 1.5 times the interquartile range
beyond the box’s boundaries. The whiskers extend from the box to the most extreme data points,
still within the defined range, excluding any outliers. The whiskers capture the highest and lowest
values that do not meet the criteria for outliers.

Results show that the simulation data-based model achieves better prediction accuracies than
the field measurement-based model. This is true in terms of median values as well as the scatter
of RMSEN. For the field model, it can be seen that the prediction accuracy is improved for larger
training data sets but does not improve further for more than three batches of data used for
training the model. Three batches of field data represent circa nine days of operational data.

The higher accuracy of the simulation-based models can be expected, given that we have no
measurement uncertainty on the simulations, and that the overall variance in simulated data (see
e.g. Figure 4.4) is smaller than in the measured data.
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Figure 5.2: RMSEN of time series predictions for sim and field model, case A.

Figure 5.3 presents the RMSEN results for modeling cases B and C. In case B (using inclination
as an input), the accuracy is comparable to that of case A, suggesting that the inclination
feature offers better descriptive power than the acceleration feature. Conversely, in case C (using
acceleration as an input), the prediction error increases notably for both field- and simulation-
based models, highlighting the reduced effectiveness of acceleration in capturing relevant system
dynamics.
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Figure 5.3: RMSEN of time series predictions for cases B and C, nbatch = 3.
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6 Results from predictions of 1-hour statistics

6.1 Evaluation metrics
In the context of evaluating the predictive models, three key metrics are used to assess their per-
formance: the root mean squared error, the relative root mean squared error, and the predictivity
coefficient.
Root Mean Square Error (RMSE) quantifies prediction accuracy by averaging the magnitude of
errors between predicted and actual values. It squares differences, calculates their mean, then
takes the square root, yielding a single value in the original units that represents typical model
error

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2, (6.1)

where N is the number of data points, ŷi is the predicted value and yi is the true value.
The relative root mean squared error (RRMSE) is a variation of RMSE that expresses the error
as a relative value. RRMSE is calculated by dividing RMSE by the mean of the true values and
then multiplying by 100% to express it as a percentage

RRMSE =

√√√√∑N
i=1(ŷi − yi)2∑N

i=1 y
2
i

, (6.2)

A classical measure for assessing the predictive ability of a model is the predictivity coefficient
Q2. It is usually calculated by the following formula

Q2 = 1 −
∑N

i=1(ŷi − yi)2∑N
i=1(yi − ȳ)2 , (6.3)

where ȳ = 1
N

∑N
i=1 y

2
i . Note that the predictivity coefficient Q2 compares the prediction errors

obtained with the model with those obtained when prediction equals the empirical mean of the
observations. Thus, the closer Q2 to one, the more accurate the model is. The coefficient close
to zero indicates poor prediction abilities, as there is a little improvement compared to prediction
by a naive sample-mean.

6.2 Results based on GP regression
This section presents the results of the proposed strategy based on Gaussian Process regression.
As mentioned in the previous section, independent models were built and trained for 2 target
variables (mean and maximum bending moments). The evaluation metrics are shown in Table
6.1. We note the very good match between the GP model predictions and true mean bending
moment. We would also like to note somewhat lower performance in terms of the maximum
bending moment.

Figure 6.1 shows the mean and maximum bending moment probability distributions, while
Figures 6.2 and 6.3 show the empirical exceedance probability calculated from the observations
and the GP models. Due to the probabilistic nature of GPs, we obtain a confidence interval for
the exceedance probability. Regarding the mean bending moment, we obtain very good results.
For the maximum, in certain areas, we underestimate. However, the true values remain within
the confidence interval.
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Evaluation metrics Mean bending moment Max bending moment
Training Testing Training Testing

RMSE (Unit) 0.006 0.028 0.07 0.11
RRMSE (%) 0.59 6.04 6.31 21.93
Q2 - 0.9963 - 0.9431

Table 6.1: GP results for the prediction of the mean and the maximum bending moment.

Figure 6.1: The probability densities of the mean and maximum bending moments from data and
GP models.

Figure 6.2: Mean of the bending moment: Probabilities of exceedance based on the observations
(in red), the Gaussian process model (in blue) and the confidence interval (in green).

6.3 Results based on aggregating LSTM model-based data
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Figure 6.3: Max of the bending moment: Probabilities of exceedance based on the observations
(in red), the GP model (in blue) and the confidence interval (in green).

26



HIPERWIND 7 MODEL UPDATING

7 Model updating
This section presents the results from the model transfer and updating as cases as summarized
in table 4.4.
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Figure 7.1: Prediction RMSEN of simulation data based model, tested on field measurements.

Figures 7.1 and 7.2 show the results from the model transfer. In this case, the model trained on
simulation data is directly used to predict the field measurements of the fore-aft bending moment.
7.1 shows the prediction accuracy of transfer cases A to C. For A and B, the mean RMSEN is
close to or above one, which means that the prediction error is equal to or above the standard
deviation of the signal itself. However, for case C, which only takes acceleration signals as input,
the mean prediction error is around 0.75, indicating that the model can somewhat predict the
target signal. These findings are also confirmed by analyzing the time series of predictions and
reference signals. While for cases A and B, no correlation between prediction and reference is
visible, the predictions of case C follow the low-frequency fluctuations of the the reference signal.
This indicates the potential for the transfer of simulation-based models to field conditions.

In the second step, the models trained on simulation data are updated using the field measure-
ments. This is done by retraining the simulation models using different quantities of measurement
data. The prediction accuracy is then tested on unseen data from the field measurements.

Figure 7.3 shows the prediction accuracy for the updated models for cases A to C. For case A,
the prediction accuracy of the updated model increases with the amount of training data used for
the model update. However, the results do not indicate that the updated models have a higher
prediction accuracy, compared to the models purely trained on field data.

In contrast, for cases B and C a trend towards better prediction accuracy for the updated
models is visible for mean prediction errors and spread of prediction errors. This is particularly
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Figure 7.2: Prediction RMSEN of simulation data based model, tested on field measurements.

visible for the update with small amount of field training data (one batch represents circa 3 day of
field measurements). This finding indicates potential in situations where little field measurements
are available. Here the model accuracy can benefit from a extensive simulated training data set,
covering a wide range of operating conditions, updated with limited data from the field.

In conclusion, the results indicate that combining simulation and field measurement data for
model training is promising but needs further refinement. The prediction accuracy of transferred
models is limited. Several factors may contribute to this outcome. One key issue is the differing
correlation patterns between input and output data in the simulation versus the field data. This
problem could be tackled by further improving the representation of the turbine and measurement
setup in the simulations, leading to a better correlation between simulated and measured signals.
Additionally, further data pre-processing techniques, such as filtering and cleaning of field mea-
surements, should be explored. For the updated models, the results of this study show potential
for the approach, which should be investigated further.
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Figure 7.3: Prediction RMSEN of field model vs. updated model for 1 to 5 batches of training
data.
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8 Conclusions
In conclusion, this project successfully validated and evaluated the surrogate modeling techniques
developed for predicting wind turbine loads, focusing on reducing uncertainties in wind turbine
design and operational load predictions. The study examined both Long Short-Term Memory and
Gaussian Process models, which were trained on simulated and field data. The results showed
that simulation-trained models generally outperformed those trained on field data due to the
lower variability and absence of measurement uncertainty in simulation environments. However,
field-based models showed significant improvements with increased data but reached a point of
diminishing returns beyond a certain amount of training data.

The Gaussian Process models proved effective in predicting mean bending moments, but they
struggled with maximum moments, pointing to areas where further refinement is needed.

Model updating, where simulation models were retrained using field data, showed promise,
particularly when limited field data was available. These findings suggest that while integrating
simulation and field data has the potential to improve load prediction models, challenges remain,
particularly in addressing discrepancies between simulated and real-world conditions.

The project highlights the potential for surrogate modeling techniques to reduce uncertainties
in wind turbine design and operation. Still, it also emphasizes the need for continued research to
improve model accuracy, especially when blending simulation data with real-world measurements.
Future efforts should focus on enhancing the generalizability of these models and refining data
pre-processing techniques to ensure better alignment between simulation and field data.
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and Danmarks Tekniske Universitet, 2022.
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