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HIPERWIND 1 EXECUTIVE SUMMARY

1 Executive Summary
The HIPERWIND project aims at achieving a reduction in the Levelized Cost of Energy of
offshore wind farms, through advancements of basic wind energy science which will lead
to reductions in risk and uncertainty. The outcome is cost efficient offshore wind through
a reduction in unnecessary use of materials, less unscheduled maintenance, and optimized
operating strategy tailored at delivering power with high market value.

To fullfill this objective, among many other activities, we have developped a risk-based
Operation and Maintenance model, which uses the improved component reliability mod-
elling established in WP5, to devise Operation and Maintenance strategies which minimize
financial risk. We will further use this model to assess the value of wind farm assets depend-
ing on their Operation and Maintenance strategy and the state of the electricity market.
The models outputs will also be used as an input to the final impact assessment wtudy,
which will be carried out to quantitatively verify how the technological achievements of
HIPERWIND transform into reduction of LCOE.

The objective of the current deliverable is then to describe the model which has been
implemented.

The O&M model can be used to produce the following outputs:
• Compute a predictive optimised long-term schedule of future maintenance operations,

on the whole life duration of a wind farm
• Evaluate the loss of energy linked to the maintenances
• Evaluate the cost (and loss of revenue) of a maintenance schedule
• Optimize for a given year and a given number of maintenance operations, the main-

tenance schedule
In practice we have implemented 2 models:
• The short term model optimises the schedule of maintenances over the year, for a

given number of operations to be planned, on a selected price and meteorological
conditions scenario. Its outputs are both the dates when to schedule each operation
and the cost.

• The long term model optimises the long term schedule, ie. the number of mainte-
nances to schedule every year. It needs as inputs the results of the short term model
on every year, every possible combination of number of replacements, averaged on
the price and meteorological scenarios. Its outputs are both the replacement schedule
but also the optimal cost and revenues.

The purpose of this deliverable is to describe the 2 models, write the mathematical
formulations and detail how these formulations are modified in order to obtain problems
that can be solved by well-known optimization algorithms. Those algorithms and how they
were implemented are described.

The models will be used for the benefits of T6.2 and T6.3., in order to compute the
expected avoided loss of electricity that is allowed by better optimising the maintenance
schedules (which will be used in the LCOE calculations in T6.3) as well as the market value
that optimising the maintenance operations could bring.
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HIPERWIND 2 INTRODUCTION

2 Introduction
The HIPERWIND project aims at achieving a reduction in the Levelized Cost of Energy of
offshore wind farms, through advancements of basic wind energy science which will lead
to reductions in risk and uncertainty. The outcome is cost efficient offshore wind through
a reduction in unnecessary use of materials, less unscheduled maintenance, and optimized
operating strategy tailored at delivering power with high market value.

To fullfill this objective, among many other activities, we have developped a risk-based
Operation and Maintenance model, which uses the improved component reliability mod-
elling established in WP5, to devise Operation and Maintenance strategies which minimize
financial risk. We will further use this model to assess the value of wind farm assets depend-
ing on their Operation and Maintenance strategy and the state of the electricity market.
The models outputs will also be used as an input to the final impact assessment study,
which will be carried out to quantitatively verify how the technological achievements of
HIPERWIND transform into reduction of LCOE.

The objective of the current deliverable is then to describe the model which has been
implemented.

The O&M model can be used to produce the following outputs:
• Compute a predictive optimised long-term schedule of future maintenance operations,

on the whole life duration of a wind farm
• Evaluate the loss of energy linked to the maintenances
• Evaluate the cost (and loss of revenue) of a maintenance schedule
• Optimize for a given year and a given number of maintenance operations, the main-

tenance schedule
In practice we have implemented 2 models, as shown on the figure 2.1

Figure 2.1: HiperWind Optimisation of maintenances models

• The short term model optimises the schedule of maintenances over the year, for a
given number of operations to be planned, on a selected price and meteorological
conditions scenarios. Its outputs are both the dates when to schedule each operation
and the cost.

• The long term model optimises the long term schedule, ie. the number of mainte-
nances to schedule every year. It needs as inputs the results of the short term model
on every year, every possible combination of number of replacements, averaged on
the price and meteorological scenarios. Its outputs are both the replacement schedule
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HIPERWIND
3 THE MAINTENANCE SCHEDULING MODEL: DATA, ASSUMPTION AND

FUNCTIONALITIES

but also the optimal cost and revenues.
In section 3.1 we describe the assumptions that were made (in particular linked to

simplifications or lack of data). Section 3.2 lists the necessary input data. Then we
describe the two optimisation problems in section 3.3. Sections 4 and 5 are dedicated to
the mathematical formulation of each problem, as well as the reformulations that were
made to reach a formulation which can be solved either by a commercial solver or by an
algorithm implemented in the scope of the project.

3 The maintenance scheduling model: data, assump-
tion and functionalities

3.1 Assumptions
• Only major maintenances, ie. replacement of ’big’ components (eg. Main Bearings,

Gearboxes) are included in the optimization. To avoid the ’curse of dimensionality, it
is recommended to keep the number of component categories limited (eg. 2 or 3);

• Components could be replaced by new components or by refurbished ones, at a lower
cost. The choice of refurbished or new component is not included in the model.
(could be in a further version)

• Even though some planned maintenance may exist, we assume that the operation we
are scheduling are always prioritized.

• No ageing factor is applied to the generation of turbines.
• All turbines in a farm are identical, and the conditions applied to all turbines are

also identical. This means that, Without maintenance, all turbines of the same farm
have the same power output, only depending on meteorological conditions, assuming
that these conditions are identical for all turbines in the farm. This means that with
one turbine unavailable at hour h, the output will be Ph = (Nturbines − 1) ∗ P max

h

with Nturbines the number of turbines in the farm and P max
h the power depending on

meteorological condition of one available turbine.
• Only one category of vessel (Jackup for Teeside) will be considered.
• The time for the vessel to reach the farm from the harbour is neglected.
• Components are always replaced before they fail. This assumption comes from the

fact that the expected failure scenarios have a yearly granularity which means we have
no information on the period of the year when failures may occur.

3.2 Inputs
In this section, we describe the needed inputs to the model.

• Description of a Maintenance operation for each component category: A maintenance
operation is composed of a sequence of ’sub-operations’

– Each sub-operation has a duration (expressed in days).
– Sub-operations cannot be interrupted. Between sub-operations, interruptions

may occur (due to weather).

3
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3 THE MAINTENANCE SCHEDULING MODEL: DATA, ASSUMPTION AND

FUNCTIONALITIES

– Each sub-operation is associated to given necessary conditions for accessibility
(maximum waves height and maximum wind speed). The sub-operation can
occur only when accessibility conditions are fullfilled.

• Constraints
– Maximum number of operations for each component category in a year
– Maximum number of parallel operations (=number of vessels) , in total and per

component category
– Maximum duration of a whole maintenance operation for each category of com-

ponents
• Failure probabilities: Scenarios with the expected number of failures per year
• Maintenance costs (per category of component):

– Fixed cost depending on the number of components to be replaced during the
year

– The vessel part of the fixed cost is scenarised with scenarios being linked to
the delay when the boat is available (if the boat is delayed the cost is lower).
Missing details for generating these scenarios.

– Per day maintenance cost (eg. for team cost, vessel daily cost.....)
– Waiting cost per day when the vessel is mobilized but nothing is happening due

to bad weather conditions
– Vessel mobilization cost for a maximum period and a maximum number of

maintenance operations. This cost can be scenarized to deal with the fact that
if the vessel is late, there may be a discount.

• Budget constraints: budget limit for the maintenance expenses on the whole period
and each year

• Climate scenarios: hourly correlated time series : wind speed, wave height, max
potential generation

• Unavailability schedules (eg. linked to availability of vessels)
• Availability of spare parts: when in the year are each spare parts available
• Any other Not-Before or Not-after constraints

3.3 The Maintenance scheduling Optimisation problem
The maintenance scheduling problem is formulated as a 2 stages optimisation problem as
follows:

• Short term:
– Time horizon: 1 year
– Time granularity: 1 day
– Decision variable: When in the year to plan each maintenance operation
– Objective function: minimize cost / maximize value (cost of maintenance, value

of selling electricity on the market)

4
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FUNCTIONALITIES

– Constraints: operation constraints (linked to the availability of materials, boats,
how many items can fit on a boat, ....)

– Uncertainties: climate scenarios; price scenarios ; delays when vessels are avail-
able

– Results:
∗ The cost matrix C(y, {N c

maint, c ∈ C}, s) giving the optimal cost for each
year y and each scenario s of replacing Nmaint components. ({N c

maint, c ∈
C} is the list of number of components of each category to be replaced, C
being the list of components (eg MaiBearing, gearbox....)

∗ For each year y and each scenario s, the best periods for replacing compo-
nents, in the case of Nmaint components

– Solving process: A monte-carlo optimisation will be conducted on all scenar-
ios, for all possible number of maintenance operations to be run (from 0 to
Nmax

fail (y, c)). For each year/scenario/number of components a mixed integer
linear programming will be implemented (or a mixed integer quadratic program-
ming if necessary)

The short term problem will be solved for each year and each possible number of main-
tenance operations, thus allowing to compute the set of optimal costs of scheduling
all possible combinations of number of maintenance operations in all possible years.
These costs will be used as inputs to the long-term problem which will compute the
optimal number of maintenance operations to be scheduled each year. The short
term model is also used to define the optimal schedule in a given year, given the
number of operations to plan.

• Long term:
– Time horizon: N years, where N is the number of remaining year before the

expected end of life of turbines. This horizon needs to be consistent with the
failure model data. It is be a parameter of the model.

– Time granularity: 1 year (failure data are given with year granularity)
– Decision variable: How many items of each category are replaced each year of

the horizon
– Objective function: minimize cost (including maintenance cost, waiting cost,

and electricity not sold). The objective function is a function of the costs
computed by the short-term model.

– Constraints:
∗ Maximum number of maintenance operations per year
∗ Components are always replaced before failure; Here it means that if the

failure model predicts a failure of a component in year y, it has to be replaced
latest year y-1.

∗ Budget constraints ;
∗ All constraints in the long-term problem can only be expressed as bounds

on the number of operations per category, and bounds on the costs, both
for the whole period of per year.
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– uncertainties: failures probabilities, which are interpreted as the number of
equipment which must have been replaced before year Y;

– Solving process: The long term problem will be solved by a stochastic optimi-
sation approach: deterministic or stochastic dynamic programming.

4 The short term optimisation problem
In the short term, we assume that we know the number of maintenances per component
category to be scheduled. The objective is to plan them, while minimising cost and max-
imising benefits, accounting for uncertainties (climate conditions, electricity prices, delays
for vessels availability), and fullfiling operations constraints. The results of this optimisation
will be:

• the optimal cost Cshort(y, {Nmaint
y,c , c ∈ [0, C − 1]}) for scheduling {Nmaint

y,c , c ∈
[0, C − 1]} maintenance operations (where Nmaint

y,c is the number of maintenance
operation for components of category c to be scheduled in the year y;

• the optimal schedule {tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]} of these maintenance
operations.

4.0.1 Mathematical formulation of the problem

Cshort(y, {Nmaint
y,c , c ∈ [0, C − 1]}) =

min
{tc

i,j ,i∈[0,Ic
y−1],j∈[0,Jc−1]}

FC({Nmaint
y,c , c ∈ [0, C − 1]})

+WC({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]})

+LR({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]}) + V M({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]})


with:
• FC({Nmaint

y,c , c ∈ [0, C − 1]}) is the fixed part of the maintenance cost, depending
only on the number of maintenances. This cost is then fixed in our optimisation
problem;

• WC({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]}) is the waiting cost, depending on the
schedule of the maintenances;

• LR({tc
i,j, i ∈ [0, Ic

y −1], j ∈ [0, J c −1]}) is the lost revenue, corresponding to periods
when some turbines are under maintenance, and then do not produce electricity. This
value depends on the schedule of the maintenances;

• V M({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]}) is the mobilisation cost; It depends on
the number of necessary mobilisation, given that a mobilisation has a fixed cost for
a given duration, and can include up to e.g. 5 operations.

The decisions variables are all the dates when a sub-block of a maintenance operation is
starting: {tc

i,j, i ∈ [0, Ic
y −1], j ∈ [0, J c −1]}, with tc

i,j being the first day of the jth subblock
of the ith maintenance operation for a component of category c.

6
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The optimisation problem can then be simplified to:

min
{tc

i,j ,i∈[0,Ic
y−1],j∈[0,Jc−1]}

WC({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]})

+LR({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]})

+V M({tc
i,j, i ∈ [0, Ic

y − 1], j ∈ [0, J c − 1]})


which can be written:

min
{tc

i,j ,i∈[0,Ic
y−1],j∈[0,Jc−1]}

 ∑
t∈T,c∈C

(
wc(t) ∗ Wy,c,t

−
∑

h∈[24∗t;24∗(t+1)[
[λh,s ∗ P h,s ∗ (Nturbines − opc(t)]

)
+ mc ∗ Mc


(R)

The constraints of the optimisation problem being:
(C-R-1) All the maintenance sub-blocks are scheduled in the year for each component category:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀j ∈ [0, J c − 1], tc

i,j ≤ Ty − 1

(C-R-2) Sub-blocks in a maintenance operations are scheduled one after the other:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀j ∈ [0, J c − 2], tc

i,j+1 ≥ tc
i,j + dc

j

(C-R-3) Maximum duration of a maintenance operation:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], tc

i,Jc−1 + dc
Jc−1 − tc

i,0 ≤ D
c

(C-R-4) A turbine is not producing during a maintenance; We will denote opc(t) the number
of maintenance operations which are ongoing at time t with

opc(t) =
Ic

y−1∑
i=0

opc
i(t)

opc
i(t) is then defined as follows:
• Before the first day of the first sub-block:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀t < tc

i,0, opc
i(t) = 0

• Between the first day of the first sub-block and the last day of the last sub-block
of a maintenance operation:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀t ∈ [tc

i,0; tc
i,Jc−1 + dc

Jc−1 − 1], opc
i(t) = 1

7
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• Between 2 maintenance operations, ie between the last day of the last sub-block
of a maintenance and the first day of the first sub-block of the next maintenance
operation:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 2], ∀t ∈]tc

i,Jc−1 + dc
Jc−1 − 1; tc

i+1,0[, opc
i(t) = 0

• After the last day of the last sub-block :

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀t ∈]tc

Ic
y−1,Jc−1 + dc

Jc−1 − 1; Ty[, opc
i(t) = 0

(C-R-5) Maximum number of parallel operations:

∀c ∈ [0, C − 1], ∀t ∈ [0, Ty − 1], opc(t) ≤ P c

∀t ∈ [0, Ty − 1],
∑

c∈[0,C−1]
opc(t) ≤ P

(C-R-6) Waiting periods occur between subblocks; We will denote wc(t) the number of main-
tenance operations that are ’waiting’ at time t with

wc(t) =
Ic

y−1∑
i=0

wc
i (t)

wc
i (t) is then defined as follows:
• Before the last day of the first sub-block: no waiting:

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀t < tc

i,0 + dc
0 − 1, wc

i (t) = 0

• During a sub-block of a maintenance operation: no waiting

∀c ∈ [0; C−1], ∀i ∈ [0, Ic
y −1], ∀j ∈ [0, J c−1], ∀t ∈ [tc

i,j; tc
i,j +dc

j −1], wc
i (t) = 0

• Between sub-blocks of a maintenance operation: waiting

∀c ∈ [0; C−1], ∀i ∈ [0, Ic
y−1], ∀j ∈ [0, J c−2], ∀t ∈]tc

i,j+dc
j−1; tc

i,j+1[, wc
i (t) = 1

• Between maintenance operations: no waiting

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 2], ∀t ∈]tc

i,Jc−1 + dc
Jc−1 − 1; tc

i+1,0[, wc
i (t) = 0

• After the last day of the last sub-block of the last maintenance operation: no
waiting

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀t ∈]tc

I−1,Jc−1 + dc
Jc−1 − 1; Ty[, wc

i (t) = 0

(C-R-7) Maximum number of parallel operations:

∀c ∈ [0, C − 1], ∀t ∈ [0, Ty − 1], wc(t) ≤ P c

∀t ∈ [0, Ty − 1],
∑

c∈[0,C−1]
wc(t) ≤ P

8
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(C-R-8) Accessibility conditions: the jth sub-block of a maintenance operation for a compo-
nent of category c can occur only if the required accessibility condition is fulfilled

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀t ∈ [tc

i,0; tc
i,Jc−1 + dc

Jc−1 − 1]At,s ≥ Ac
j

(C-R-9) Schedule and availability conditions: the ith maintenance operation cannot start
before a specific date,

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], tc

i,0 ≥ T c
i

(C-R-10) Schedule and availability conditions: the ith maintenance operation cannot end after
another specific date,

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], tc

i,Jc−1 + dc
Jc−1 − 1 ≤ T

c
i

(C-R-11) Mobilisation cost: a vessel is mobilised for a maximum duration. If it is necessary to
mobilise it many times then the cost increases.

∀c ∈ [0; C − 1], mc =
Ic

y−1∑
i=1

zc
i

where:
• if the next operation ends before the end of the mobilisation period, no addtional

cost:
if tc

i,Jc−1 ≤ tc
i−1,0 + DM

c then zc
i = 0

• if the next operation ends after the end of the mobilisation period, there is an
addtional cost:

if tc
i,Jc−1 > tc

i−1,0 + DM
c then zc

i = 1

where:
- y is the year index (useful for data depending on the year)
- s ∈ S is the scenario index
- Ty is the number of days of the considered year
- {ht} are the indexes of the hours of the day t, with {ht} ∈ [24 ∗ t; 24 ∗ (t + 1)[
- Hy is the number of hours in the year y
- c is the index of the component category (eg. gearbox)
- C is the number of components categories
- {Nmaint

y,c , c ∈ [0, C − 1]} is the number of maintenances for each different component
category to be scheduled the year y

- tc
i,j is the start date of the jth block of the ith maintenance operation for the component

category c
- Ic

y is the number of maintenance operations to be scheduled the year y for the component
category c

- J c is the number of sub-blocks composing a maintenance operation for the component
category c

- dc
j is the duration of the jth sub-block of a maintenance operation for a component of

category c

9
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- D
c is the maximum duration of a maintenance operation for a component of category c

- Nturbines is the number of turbines in the farm
- opc(t) the number of turbines of category c in maintenance at time t
- opc

i(t) = 1 if the ith maintenance operation in the category c is occurring at t, opc
i(t) = 0

if not.
- wc(t) the number of turbines which are ’in the middle’ of a maintenance operation

(waiting)
- wc

i (t) = 1 if t corresponds to a waiting period during the ith maintenance operation in
the category c, wc

i (t) = 0 if not.
- mc the number of necessary vessel mobilisations
- M c the unitary mobilisation cost of the vessel
- DM

c the maximum duration of one vessel mobilisation (which can be used for more
than one operation)

- P the maximum number of parallel operations
- P

c the maximum number of parallel operations for components of category c
- Wy,c,t is the cost of waiting during 1 day, at day t, in the year y for the component

category c
- λh,s is the marginal cost of electricity for the hour h of the year, in the scenario s
- P h,s is the power generated by 1 turbine at hour h for the scenario s if the turbine is

available.
- At,s describes the accessibility conditions. At,s can take a limited number of integer

values {0, Ai, i ∈ [0; NA]} where NA is the number of possible accessibility situations;
The biggest At,s is, the more accessible the conditions are, starting from At,s = 0 where
it is impossible to conduct any kind of operation to At,s = maxAi,i∈[0;NA] where all
operations are possible.

- Ac
j is the minimum required accessibility conditions for the jth sub-block of an operation

for a component of category c. Ac
j ∈ {0, Ai, i ∈ [0; NA]}

4.0.2 Re-Formulation of the problem as a MILP or a MIQP

We define the following variables as being the decision variables of the optimisation problem:
• sc,t,i,j is a binary variable which is equal to 1 if the jth sub-block of the ith maintenance

operation for the component of category c starts at time t.
• zc,i is a binary variable which is equal to 1 if ith maintenance operation ends before

the mobilisation period corresponding to the (i-1)th operation. zc,0 = 0. Including
those variables will lead to transforming the linear problem into a quadratic problem.

As we are optimising over one year, with a daily granularity for the decision variables,
assuming that there may be a maximum of 5 different categories of components, that we
cannot schedule more than 10 maintenance operations for each component category and
that a maintenance operation will be composed of max 5 subblocks, the number of binary
variables will never exceed 365 ∗ 5 ∗ 10 ∗ 5 < 100000.

We can then compute opc
t , wc

t and mcas follows:

opc(t) =
Ic

y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1

 (4.1)

10
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wc(t) =
Ic

y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1 −

Jc−1∑
j=0

sc,t,i,j +
t−1∑

θ=t−dc
j

sc,θ,i,j




simplified as:

wc(t) =
Ic

y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1 −

Jc−1∑
j=0

t∑
θ=t−dc

j+1
sc,θ,i,j

 (4.2)

mc =
Ic

y−1∑
i=1

[1 − zc
i ] = Ic

y −
Ic

y−1∑
i=1

zc
i (4.3)

which allows to write the objective as a function F of the binary variables si,j,t,c:

min
{sc,t,i,j ,i<Iy ,j<Jc,t<Ty ,c<C}

 ∑
t∈T,c∈C

(
wc(t) ∗ Wy,c,t

−
∑

h∈[24∗t;24∗(t+1)[
[λh,s ∗ P h,s ∗ (Nturbines − opc(t)]

)

+
∑
c∈C

mc ∗ Mc


(4.4)

with F the function to minimise and

F =
C−1∑
c=0

Fc

We will denote in the following:

Vy,t,s =
∑

h∈[24∗t;24∗(t+1)[

[
λh,s ∗ P h,s

]

We can the write

Fc = mc ∗ Mc +
Ty−1∑
t=0

[wc(t) ∗ Wy,c,t + opc(t) ∗ Vy,t,s] −
Ty−1∑
t=0

[Nturbines ∗ Vy,t,s] (4.5)

where
Ty−1∑
t=0

[Nturbines ∗ Vy,t,s]

is a fixed term, denoted F fixed
c

We then have Fc = F v
c − FCfixed

c

F v
c can be written:

11
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F v
c =

Ic
y−1∑
i=0

 Ty−1∑
t=0

(
(Wy,c,t + Vy,t,s)

t∑
θ=0

sc,θ,i,0

−(Wy,c,t + Vy,t,s)
t−dJc−1∑

θ=0
sc,θ,i,Jc−1

−Wy,c,t

Jc−1∑
j=0

t∑
θ=t−dc

j+1
sc,θ,i,j

)
− Mczc,i


(4.6)

We can now reorder F v
c as follows:

F v
c =

Ic
y−1∑
i=0

{ Ty−1∑
t=0

Ty−1∑
θ=t

(Wy,c,θ + Vy,θ,s)
 sc,t,i,0 −

 Ty−1∑
θ=t+dJc−1

(Wy,c,θ + Vy,θ,s)
 sc,t,i,Jc−1

(4.7)

−
Jc−1∑
j=0

t+dJc−1−1∑
θ=t

Wy,c,θ

 sc,t,i,j

 − Mczc,i

}

Note that we can write tc
i,j = ∑T −1

t=0 t ∗ si,j,t,c

Finally we need to reformulate the accessibility conditions: As,t,c,j is a binary data of
which value is 1 when for the scenario s at timestep t (expressed in days) it is possible to
operate the jth sub-block of a maintenance operation for a component of category c, and
0 if not. This is equivalent to when At,s ≥ Ac

j.
The constraints of the problem (R) can be written as follows

(C-M-1) all subblocks of maintenance operations are scheduled once It corresponds to con-
straint (C-R-1)

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀j ∈ [0, J c − 1],

Ty−1∑
t=0

sc,t,i,j = 1

(C-M-2) all maintenance operations are scheduled.

∀c ∈ [0; C − 1], ∀j ∈ [0, J c − 1],
Ty−1∑
t=0

Ic
y−1∑
i=0

sc,t,i,j = Nmaint
y,c

(C-M-3) all subblocks for each maintenance operations are scheduled.

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀j ∈ [0, J c − 1],

Ty−1∑
t=0

sc,t,i,j = 1

This constraint is useless as already included in (C-M-1)
(C-M-4) for each maintenance, sub-blocks are scheduled in the required order. This is equiv-

alent to constraint (C-R-2)

∀c ∈ [0; C −1], ∀i ∈ [0, Ic
y −1], ∀j ∈ [0, J c −2],

T −1∑
t=0

t∗sc,t,i,j −
T −1∑
t=0

t∗sc,t,i,j+1 ≤ 1−dc
j

12
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(C-M-5) maximum duration of a maintenance operation. It corresponds to constraint (C-R-3)

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

T −1∑
t=0

(t ∗ sc,t,i,Jc−1 − t ∗ sc,t,i,0) ≤ D
c − dc

Jc−1

(C-M-6) is related to the maximum number of parallel operations (for all kinds of mainte-
nances). It corresponds to constraint (C-R-5)

∀t ∈ [0, Ty − 1],
C−1∑
c=0

Ic
y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1

 ≤ P

This can be also be written with a simpler constraint:

∀t ∈ [0, Ty − 1],
C−1∑
c=0

Ic
y−1∑
i=0

Jc−1∑
j=0

t∑
θ=t+1−dJc−1

sc,θ,i,j ≤ P
c

(C-M-7) is related to the maximum number of parallel operations for maintenances for com-
ponents of category c. It corresponds to constraint refMaxParallel2

∀t ∈ [0, Ty − 1], ∀c ∈ [0, C − 1],
Ic

y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1

 ≤ P
c

This can be also be written with a simpler constraint:

∀t ∈ [0, Ty − 1], ∀c ∈ [0, C − 1],
Ic

y−1∑
i=0

Jc−1∑
j=0

t∑
θ=t+1−dJc−1

sc,θ,i,j ≤ P
c

(C-M-8) is related to the accessibility conditions. It corresponds to constraint (C-R-8).

∀t ∈ [0, Ty−1], ∀c ∈ [0; C−1], ∀j ∈ [0, J c−1],
Ic

y−1∑
i=0

sc,t,i,j +
t−1∑

θ=t−dc
j+1

sc,θ,i,j

 ≤ As,t,c,j

(C-M-9) is related to the scheduling conditions (not after). It corresponds to constraints
(C-R-10)

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

Ty−1∑
t=0

(−1) ∗ t ∗ sc,t,i,0 ≤ (−1) ∗ T c
i

(C-M-10) is related to the scheduling conditions (not before). It corresponds to constraints
(C-R-9)

∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

T −1∑
t=0

t ∗ sc,t,i,Jc−1 ≤ T
c
i − dc

Jc−1

(C-M-11) is related to the number of necessary vessel mobilization. It corresponds to constraints
(C-R-11). This constraint is quadratic.

∀c ∈ [0; C − 1], ∀i ∈ [1; Ic
y − 1],

T −1∑
t=0

(t ∗ sc,t,i,Jc−1 − t ∗ sc,t,i−1,0) ∗ zc,i ≤ DM
c

(C-M-12) The constraints (C-R-4) and (C-R-6) or the problem (R) are embedded in the for-
mulation of the problem (M)

13
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4.0.3 The short term problem expressed as a MILP or a MIQP with binary
variables

The problem to be solved is then:

Cshort(y, {Nmaint
y,c , c ∈ [0, C − 1]}) =

min
{sc,t,i,j}

C−1∑
c=0

Ic
y−1∑
i=0

{
Ty−1∑
t=0

Ty−1∑
θ=t

(Wy,c,θ + Vy,θ,s)
 sc,t,i,0

−

 Ty−1∑
θ=t+dJc−1

(Wy,c,θ + Vy,θ,s)
 sc,t,i,Jc−1 −

Jc−1∑
j=0

t+dJc−1−1∑
θ=t

Wy,c,θ

 sc,t,i,j

 − Mczc,i}

−
C−1∑
c=0

Ty−1∑
t=0

(Nturbines ∗ Vy,t,s) + Ic
y ∗ M c (M)

with the following constraints:
(C-M-1) ∀c ∈ [0; C − 1], ∀i ∈ [0, Ic

y − 1], ∀j ∈ [0, J c − 1],

Ty−1∑
t=0

sc,t,i,j = 1

(C-M-2) ∀c ∈ [0; C − 1], ∀j ∈ [0, J c − 1],

Ty−1∑
t=0

Ic
y−1∑
i=0

sc,t,i,j = Nmaint
y,c

(C-M-3) ∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

Ty−1∑
t=0

Jc−1∑
j=0

sc,t,i,j = J c

(C-M-4) ∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1], ∀j ∈ [0, J c − 2],

T −1∑
t=0

t ∗ sc,t,i,j −
T −1∑
t=0

t ∗ sc,t,i,j+1 ≤ 1 − dc
j

(C-M-5) ∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

T −1∑
t=0

(t ∗ sc,t,i,Jc−1 − t ∗ sc,t,i,0) ≤ D
c − dc

Jc−1

(C-M-6) ∀t ∈ [0, Ty − 1],

C−1∑
c=0

Ic
y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1

 ≤ P

14
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(C-M-7) ∀t ∈ [0, Ty − 1], ∀c ∈ [0, C − 1],

Ic
y−1∑
i=0

 t∑
θ=0

sc,θ,i,0 −
t−dJc−1∑

θ=0
sc,θ,i,Jc−1

 ≤ P
c

(C-M-8) ∀t ∈ [0, Ty − 1], ∀c ∈ [0; C − 1], ∀j ∈ [0, J c − 1],

Ic
y−1∑
i=0

sc,t,i,j +
t−1∑

θ=t−dc
j+1

sc,θ,i,j

 ≤ As,t,c,j

(C-M-9) ∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

Ty−1∑
t=0

(−1) ∗ t ∗ sc,t,i,0 ≤ (−1) ∗ T c
i

(C-M-10) ∀c ∈ [0; C − 1], ∀i ∈ [0, Ic
y − 1],

T −1∑
t=0

t ∗ sc,t,i,Jc−1 ≤ T
c

i − dc
Jc−1

(C-M-11) ∀c ∈ [0; C − 1], ∀i ∈ [1; Ic
y − 1],

T −1∑
t=0

(t ∗ sc,t,i,Jc−1 − t ∗ sc,t,i−1,0) ∗ zc,i ≤ DM
c

where:
• The constraint (C-M-1) means that all subblocks of maintenance operations are

scheduled once
• The constraint (C-M-2) means that all maintenance operations are scheduled.
• The constraint (C-M-3) means that all subblocks for each maintenance operations

are scheduled. It corresponds to constraint (C-R-1)
• The constraint (C-M-4) means that for each maintenance, sub-blocks are scheduled

in the required order. This is equivalent to constraint (C-R-2)
• The constraint (C-M-5) is related to the maximum duration of a maintenance oper-

ation. It corresponds to constraint (C-R-3)
• The constraint (C-M-6) and (C-M-7) are related to the maximum number of parallel

operations (for all kinds of maintenances or for maintenances for components of
category c. It corresponds to constraint (C-R-5) and (C-R-7)

• The constraint (C-M-8) is related to the accessibility conditions. It corresponds to
constraint (C-R-8). Those constraints can be skipped for subblocks/ timesteps wih
accessible conditions.

• The constraints (C-M-9) and (C-M-10) are related to thescheduling conditions (not
after/nt before). They correspond to constraints (C-R-10) and (C-R-9)
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• The constraints (C-M-11) are related to mobilisation periods. They correspond to
constraints (C-R-11)

• The constraints (C-R-4) and (C-R-6) or the problem (R) are embedded in the for-
mulation of the problem (M)

4.0.4 Solving the short term problem with a MILP or MIQC solver

Without the mobilisation constraints, the short term problem is solved using a MILP solver
to solve the problem as formulated above. With this constraint it is solved with a MIQC
solver.

The objective function (M) can be written:

min
{xc,t,i,j}

C−1∑
c=0

Ic
y−1∑
i=0

Jc−1∑
j=0

Ty−1∑
t=0

ac,txc,t,i,j + bczc,i

 − K (4.8)

with:
• for j = 0:

ac,t =
Ty−1∑
θ=0

(Wy,c,θ + Vy,θ,s)

• for j = J c − 1:
– for t ≤ Ty − 1 − dJc−1:

ac,t = (−1) ∗
Ty−1∑

θ=t+dJc−1

(Wy,c,θ + Vy,θ,s)

– for t > Ty − 1 − dJc−1:
ac,t = 0

• for 0 < j < J c − 1:
– for t ≤ Ty − dJc−1:

ac,t = (−1) ∗
t+dJc−1−1∑

θ=t

Wy,c,θ

– for t > Ty − dJc−1:

ac,t = (−1) ∗
Ty−1∑
θ=t

Wy,c,θ

• for 0 < i < Ic
y:

bc = (−1) ∗ M c

with contraints (C-M-1) to (C-M-11).
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5 The long term optimization problem
In the long term, we compute the number of maintenances per component category and
per year, while minimising cost and maximising benefits. We have implemented 2 versions:

• Solve the deterministic problem on each of the uncertainties scenarios, and compute
the average;

• Solve the stochastic problem on a scenario tree.

5.1 The long term mathematical model

min
Ny,c,s,y∈[0;Y [,c∈[0,C[,s∈[0,S[

 E
s∈[0,S[

Y −1∑
y=0

C−1∑
c=0

C(y, {Ny,c,s, c ∈ [0, C[})


C(y, {Ny,c,s, c ∈ [0, C[}) is the mean optimal cost of scheduling Ny,c,s operations for
the component category c in the year y.

The decision variables are {Ny,c,s, y ∈ [0; Y [, c ∈ [0, C[, s ∈ [0, S[}, where Ny,c,s is the
number of maintenance operations scheduled the year y for the component category c in
the scenario s. The constraints are the following:

• Enough maintenance operations are scheduled so that failures occur after replace-
ments:

∀y ∈ [0; Y [, ∀s ∈ [0, S[,
y∑

x=0
Nx,c,s ≥

y∑
x=0

N cum
y,s

• Upper bound on the number of replacements each year for each category:

∀y ∈ [0; Y [, ∀s ∈ [0, S[, ∀c ∈ [0; C[, Ny,c,s ≤ N c
y

• Upper bound on the total number of replacements each year:

∀y ∈ [0; Y [, ∀s ∈ [0, S[,
C−1∑
c=0

Ny,c,s ≤ Ny

• Upper bound on the budget per year:

∀y ∈ [0; Y [, ∀s ∈ [0, S[,
C−1∑
c=0

C(y, s, Ny,c,s) ≤ By

• Upper bound on the total budget:

∀s ∈ [0, S[,
Y −1∑
y=0

C−1∑
c=0

C(y, s, Ny,c,s) ≤ B

• Upper bound on the total number of replacements:

∀s ∈ [0, S[,
Y −1∑
y=0

C−1∑
c=0

Ny,c,s ≤ CN

17
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• Upper bound on the total number of replacements of each category:

∀s ∈ [0, S[, ∀c ∈ [0, C[,
Y −1∑
y=0

Ny,c,s ≤ CN c

where:
• Y is the number of years of the horizon;
• C is the number of components categories;
• S is the number of scenarios (note that we are not referring to the same scenarios as

in the short term model as here the uncertainties are the failure probabilities;
• CN is the maximum possible number of operations to be scheduled
• CN c is the maximum possible number of operations to be scheduled for a component

of any category
• CN c

y,s is the cumulative number of expected failures occurred before year y for the
component category c in the scenario s;

• N c
y is the maximum number of operations that can be scheduled for the component

category c during the year y

• Ny is the maximum number of operations that can be scheduled during the year y

• By is the maximum budget that can be spent during the year y

• B is the maximum budget that can be spent during the whole period.
• C(y, {Ny,c,s, c ∈ [0, C[}) are the costs computed by the short term model.

5.2 Solving the long term problem with dynamic programming
2 options are implemented: solving each scenario via deterministic dynamic programming,
or solving the whole problem by stochastic dynamic programming.

5.2.1 Probabilising the scenarios

From the Sc
tot failure scenarios of each component, we obtain Sc

prob scenarios, where scenario
s has probability πs. We then transform these scenarios which give the number of failures
F c

s,y for the component c in year y for scenario s in scenarios of cumulated failures CF c
s,y,

where
∀s ∈ [0, S[, ∀c ∈ [0, C[, CF c

s,y =
y∑

x=0
F c

s,y

5.2.2 Deterministic dynamic programming

The dynamic programming is composed of 2 steps:
• Backward step, where the bellman values for each cumulated number of maintenances

at each year is computed, from year Y − 1 to year 0
• Forward step, where the optimal number of maintenances at each year are computed,

from year 0 to year Y − 1
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We will denote x the states of the dynamic programming, x being the set of cumulated
maintenances since year 0 for all components, with x = (xc, c ∈ [0, C[). We will denote
BV (x, y) the Bellman value of state x at year y

1. Backward step
• Compute the ranges of reachable cumulated maintenances for each year: for

each component c, the possible number of cumulated maintenances is [CM c
s,y, CM c

s,y],
where:

– CM c
s,y = CF c

y,s

– CM c
s,y = ∑y

t=0 N c
y

x ∈ range(s, y) means:

∀c ∈ [0, C[, xc ∈ [CM c
s,y, CM c

s,y]

• Initialise Bellman Values for the last year:

∀x ∈ range(s, Y − 1), BV (x, Y − 1) = 0

• compute Bellman Value for year y:

∀y ∈ [Y, 2, 0], ∀x ∈ range(y), BV (x, y) = min
u∈T r(x,y)

[C(y + 1, u) + BV (x + u, y + 1)]

where u is the transition (ie the number of maintenances to schedule for each
component category), with u = (uc, c ∈ [0, C[), Tr(x, y) is the set of possible
transitions (ie possible number of maintenances to schedule in year y + 1 from
state x at year y, ie. given that the cumulated number of transitions at year y
is x u ∈ Tr(x, y) means:

∀c ∈ [0, C[, uc ∈ [max(0, CM c
s,y+1 − xc), min(N c

y+1, CM c
s,y+1 − xc]

2. Forward step
• Initialize x at year 0: x0 = 0, meaning ∀c ∈ [0, C[, xc

0 = 0
• Compute u and x at year y:

uy+1 = Argminu∈T r(xy ,y+1) [C(y + 1, u) + BV (xy + u, y + 1)]

xy+1 = xy + uy+1 : ∀c ∈ [0, C[xc
y+1 = xc

y + uy+1

• The optimal cost of scenario s is then the cost computed at year 0:

Cost = min
u∈T r(x0,0)

[C(0, u) + BV (x0 + u, 0)]

5.2.3 Stochastic dynamic programming

The stochastic dynamic programming is computed over a scenario tree. This tree is created
out of the probabilised scenarios and has the following characteristics:
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• It is composed of N nodes (set Nodes), each one with probability πn

• There are Ny nodes at year y (the set Nodes(y)) with ∑
n∈Nodes(y) πn = 1

• there is only one (fictive) node root at year −1
• a node has only one father but can have many sons, with:

∀n ∈ ∪y∈[0,Y −2],
∑

m∈sons(n)
πm = πn

∀m ∈ sons(n), father(m) = n

• The node n is constructed out of scenarios which have the same values at the year
corresponding to the node n and at all past years. We denote S(n) the set of scenarios
belonging to node n

∀n ∈ Nodes, ∀s ∈ S(n), ∀c ∈ [0, C[, F c
s,y(n) = F c

n

• The cumulated number of expected failures before node n (included) is then CF c
n,

while the number of expected failures at node n is F c
n,

The stochastic dynamic programming is composed of 2 steps:
• Backward step, where the bellman values for each cumulated number of mainteances

at each year is computed, from year Y − 1 to year 0
• Forward step, where the optimal number of maintenances at each year are computed,

from year 0 to year Y − 1
We will denote x the states of the dynamic programming, x being the set of cumulated
maintenances since year 0 for all components, with x = (xc, c ∈ [0, C[). We will denote
BV (x, n) the bellman value of state x at node n

1. Backward step
• Compute the ranges of reachable cumulated maintenances for each node: for

each component c, the possible number of cumulated failures is [CF c
s,n, CF c

s,n],
where:

– CM c
n = CF c

n

– CM c
n = ∑y

t=0(n)N c
y

x ∈ range(n) means:

∀c ∈ [0, C[, xc ∈ [CM c
n, CM c

n]

• Initialise Bellman Values for the last year:

∀n ∈ Nodes(Y − 1), ∀x ∈ range(n), BV (x, n) = 0

• compute Bellman Value for node n:

∀y ∈ [Y, 2, 0], ∀n ∈ Nodes(y), ∀x ∈ range(n),

BV (x, n) = 1
πn

∑
m∈sons(n)

πm min
u∈T r(x,m)

[C(y(m), u) + BV (x + u, y(m))]
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where u is the transition (ie the number of maintenances to schedule for each
component category), with u = (uc, c ∈ [0, C[), Tr(x, m) is the set of possi-
ble transitions (ie possible number of maintenances to schedule at node m ∈
sons(n) from state x at node n, ie. given that the cumulated number of tran-
sitions at node n is x u ∈ Tr(x, m) means:

∀c ∈ [0, C[, uc ∈ [max(0, CM c
m − xc), min(N c

y(m), CM c
m − xc]

2. Forward step
• Initialize x at year 0: x0 = 0, meaning ∀c ∈ [0, C[, xc

0 = 0
• Compute u and x at year y:

∀y ∈ [1, Y [, ∀n ∈ Nodes(n),
un = Argminu∈T r(xfather(n),n)

[
C(y, u) + BV (xfather(n) + u, n)

]
xn = xfather(n) + un : ∀cin[0, C[xc

n = xc
father(n) + un

• The optimal cost of scenario s is then the cost computed at year 0:

Cost = min
u∈T r(x0,0)

[C(0, u) + BV (x0 + u, 0)]

6 Implementation

6.1 An Operation and Maintenance tool
For the benefits of the Hiperwind project, both the short-term and long-term models have
been implemented and tested.

• Short term optimization:
– Implemented in python with an interface through pyomo for the MILP and MIQP

which can be solved by either GLPK or CPLEX
– Tests have been conducted on a Linux machine with 8 CPU and 16Go RAM
– Solving one instance on one year / one scenario takes approximately 1 second

in the MILP case and up to 3 minutes in the MIQP case
– For a given year and a given number of replacements to schedule for each

component, the tool solves the problem for each scenario (price scenario, me-
teorological scenario, delay scenario) and computes the average cost, as well as
the average replacement schedule.

– The model can also be used on a unique scenario in order to obtain a feasible
mmaintenance schedule.

• Long term optimization:
– A deterministic and a stochastic version were Implemented in python
– Tests have been conducted on a Linux machine with 8 CPU and 16Go RAM
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– The stochastic optimisation takes as inputs the average optimal costs on all
years and all combinations of possible number of operations each year as input
and computes the optimal number of maintenance operations per year and
component category, given the expected failures probabilities.

The implementation consists of 2 python modules, one dedicated to short-term optimi-
sation and one dedicated to long-term optimisation, a yaml parameters and main data file
and a set of csv input and output files. No visual interface is available. The implemented
sofytware can be ran on any computer, provided that python3 is installed and that the
python packages pandas, numpy, os, yaml, math, datetime, calendar, itertools, sys and
pyomo are available and installed.

6.2 Inputs
The inputs include:

• A parameter and main data file, implemented as a yaml file. An example with
fake data is given below (figure 6.1). This file contains the non timeseries data, in
particular the costs and the constraints.

• A csv file for the meteorological data. This files includes one column per data cate-
gory: Wind speed at 10 m, wave height, maximum power of a turbine (for the given
wind speed), and one row per hour. It contains a number of yearly scenarios: the
first 8760 rows are the data from Jan 1st 0h to Dec. 31 23h for the first scenario,
followed by the second scenario...

• A csv file containing the failure probability data per component catagory and location.
This file includes one columns per scenario and one row per future year. The values
are the number of expected failures for the given component, scenario and year.

• A serie of csv files containing the prices of electricity in the region where the farm is
located: one file per year, containing 1 row per hour, 1 column with the timestamp
(format yyyy:mm:dd HH:MM), 1 column per price scenario with the values in €/MW.

6.3 Running the tool
The short term model can be launched in parallel on a serie of :

• years (namely from 2023 to 2048);
• price scenarios;
• meteorological scenarios;
• number of components to replace

6.4 Outputs
6.4.1 Outputs of the short term model

The short term model runs on one given year, and can optimise either the schedule for
replacing a given number of components of each category in one given scenario, or can
optimise (sequencially) the schedules for replacing any possible combination of number of
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Figure 6.1: Main input data file

components of each category (given a maximum number for each category) for all the
scenarios. The results are available in the same output files.

• Optimal schedule: one csv file with one row per sub-block of maintenance operation
and 7 columns:

– Column 0: index of the sub-operation
– Column 1: number of replacements per component category: (1,4) means that

there are 2 component categories (eg. gearbox and main bearing) and we opti-
mise the schedule for 1 gearbox replacement and 4 main bearings replacements

– Column 2: index of the component category: eg. O for gearbox, 1 for main
bearing

– Column 3: (optionnal, only if results on all scenario are written): index of the
scenario

– Column 4: index of the maintenance operation for the given component category
(1 mean it is the second replacement in the year)

23



HIPERWIND 6 IMPLEMENTATION

Figure 6.2: Enter Caption

– Column 5: index of the sub-block of the current maintenance operation
– Column 6: index of the day when the current sub-block starts

An example is shown in figure 6.2, where the short-term model was ran for one
component category and was asked to optimise 4 replacements in the year. Only one
scenario (scenario 0) was included.

• Optimal cost: one csv file per year with one row per scenario and one column per
number of components to replace for each component category. An example is given
in figure 6.3 with 2 scenarios (scenarios 0 and 1), 2 categories of components (eg
gearbox and main bearing) with different cases where 0 or 1 gearboxes and 0 to 3
main bearings are replaced.

Figure 6.3: Enter Caption

6.4.2 Outputs of the long term model

The long term model can be ran either in deterministic mode (in this case each scenario will
be optimised sequencially) or in stochastic mode (all scenarios will be optimised together).
In both cases it produces both per scenario results and averaged results:

• Optimal average cost: one single value (€or £)
• Optimal cost per scenario: one csv file with one column per scenario and one row

containing the optimal cost
• Optimal average schedule: one csv file per component with one row per year giving

the average number of components to replace. Note that this number, as averaged,
may be non integer.
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• Optimal schedule per scenario: one csv file per component with X header rows (mul-
tiindex) giving the indexes of each kind of scenario, and one row per scenario giving
the number of components to replace.

7 Conclusion and perspectives
This implementation will be used for the benefits of T6.2 and T6.3. In the future the
following tasks could be envisaged:

• Re-write a more ’industrial’ version (the one we have is a research code, usable only
for the benefit of the research conducted within this project)

• Optimize the solving process, in particular for the short-term problem. For MINLP
problems, the computation time can be drastically reduced by adding additionnal
constraints (called cuts), which do not change the result of the optimisation, but
may drastically (or not) reduce the computation time as they will help the branc and
bound solver to find the optimal solution much faster. This would require consequent
research time and is not feasible in the timeframe and resource allowance of the
hyperwinf project but could be envisaged in the future.

• Parallelize the resolution of the short term problems. This should be pretty easy
as it could be done through solving in parallel the problem on different scenarios.
Nevertheless, it requires some expertise on parallelization techniques, which are out
of the scope of the hyperwind project.

Acknowledgement
The work is a part of the HIghly advanced Probabilistic design and Enhanced Reliability
methods for the high-value, cost-efficient offshore WIND (HIPERWIND) project, which
has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No. 101006689.

25


	Executive Summary
	Introduction
	The maintenance scheduling model: data, assumption and functionalities
	Assumptions
	Inputs
	The Maintenance scheduling Optimisation problem

	The short term optimisation problem
	Mathematical formulation of the problem
	Re-Formulation of the problem as a MILP or a MIQP
	The short term problem expressed as a MILP or a MIQP with binary variables
	Solving the short term problem with a MILP or MIQC solver


	The long term optimization problem
	The long term mathematical model
	Solving the long term problem with dynamic programming
	Probabilising the scenarios
	Deterministic dynamic programming
	Stochastic dynamic programming


	Implementation
	An Operation and Maintenance tool
	Inputs
	Running the tool
	Outputs
	Outputs of the short term model
	Outputs of the long term model


	Conclusion and perspectives
	Acknowledgement

