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HIPERWIND 2 INTRODUCTION

1 Executive Summary
The HIPERWIND project aims at achieving a reduction in the Levelized Cost of Energy of
offshore wind farms, through advancements of basic wind energy science which will lead
to reductions in risk and uncertainty. The outcome is cost efficient offshore wind through
a reduction in unnecessary use of materials, less unscheduled maintenance, and optimized
operating strategy tailored at delivering power with high market value.

To fulfill this objective, among many other activities, we have developed a risk-based
Operation and Maintenance model, which uses the improved component reliability mod-
elling established in WP5, to devise Operation and Maintenance strategies which minimize
financial risk. We have used this model to assess the value of wind farm assets depending
on their Operation and Maintenance strategy and the state of the electricity market.

The O& M tool is composed of:
• 2 optimization models:

– The short term model optimises the schedule of maintenance over the year, for a
given number of operations to be planned, on a selected price and meteorological
conditions scenario.

– The long term model optimises the long term schedule, i.e. the number of
maintenance to schedule each year.

• and a simulator which for each life-cycle expected failures scenario computes year
after year the optimal number of maintenance to be scheduled the given year and the
average yearly maintenance schedule and expected revenue.

The main results are:
• The short term optimization always leads to an increase in the expected revenue even

though in some cases the optimal schedules include longer periods of maintenance
thus an increased number of hours without generation;

• The long term optimization also leads to an increase in the expected revenue, which
is highly dependent on the prices (in the case of price valuation);

• The short term optimization increases the market factor of the wind farm by an
average of 3% with large variations due to the level of prices (from 0% to 5%);

• The long term optimization increases the market factor of the wind farm by an average
of 3% with large variations due to the level of prices (from 0% to 5%).

2 Introduction
The HIPERWIND project aims at achieving a reduction in the Levelized Cost of Energy of
offshore wind farms, through advancements of basic wind energy science which will lead
to reductions in risk and uncertainty. The outcome is cost efficient offshore wind through
a reduction in unnecessary use of materials, less unscheduled maintenance, and optimized
operating strategy tailored at delivering power with high market value.
To fulfill this objective, among many other activities, we have developed a risk-based Op-
eration and Maintenance model, which uses the improved component reliability modelling
established in WP5, to devise Operation and Maintenance strategies which minimize finan-
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HIPERWIND 2 INTRODUCTION

cial risk. We have then used this model to assess the value of wind farm assets depending
on their Operation and Maintenance strategy and the state of the electricity market.
The models outputs are also be used as an input to the final impact assessment study,
which will be carried out to quantitatively verify how the technological achievements of
HIPERWIND transform into reduction of LCOE.
The O&M model can be used to produce the following outputs:

• Compute a predictive optimised long-term schedule of future maintenance operations,
on the whole life duration of a wind farm

• Evaluate the loss of energy linked to the maintenance
• Evaluate the cost (and loss of revenue) of a maintenance schedule
• Optimize for a given year and a given number of maintenance operations, the main-

tenance schedule
In practice we have implemented:

• 2 optimization models:
– The short term model optimises the schedule of maintenance over the year, for a

given number of operations to be planned, on a selected price and meteorological
conditions scenario. Its outputs are both the dates when to schedule each
operation and the cost (including maintenance cost and loss of revenue due to
non produced electricity during the operation).

– The long term model optimises the long term schedule, i.e. the number of
maintenance to schedule each year. It uses as inputs the results of the short term
model for every year, every possible combination of number of replacements,
averaged on the price and meteorological scenarios. Its outputs are both the
replacement schedule but also the optimal costs and revenues.

• a simulator which for each life-cycle expected failure scenario computes year after
year the optimal number of maintenance to be scheduled the given year given the
probability of failures which are expected to occur in the future years, as well as
the average (on price and meteorological scenarios) yearly maintenance schedule and
expected revenue.

We have ran the models and the simulators on different cases:
• Valuation with price scenarios or with a fixed strike price;
• Computation of the life-cycle maintenance schedule (number of maintenance per

year) with the stochastic long-term optimization model or use of reference schedules;
• Computation of the annual maintenance schedules with or without using the opti-

mization algorithm.
We obtained the following results:

• The short term optimization always leads to an increase in the expected revenue even
though in some cases the optimal schedules include longer periods of maintenance
thus an increased number of hours without generation;

• The long term optimization also leads to an increase in the expected revenue, which
is highly dependent on the prices (in the case of price valuation)

2



HIPERWIND3 CONTEXT: SCHEDULING THE MAINTENANCE OF A WIND FARM IN THE UK

• The short term optimization increases the market value factor of the wind farm by
an average of 3% with large variations due to the level of prices (from 0% to 5%)

• The long term optimization increases the market value factor of the wind farm by an
average of 3% with large variations due to the level of prices (from 0% to 5%)

Section 3 describes the real context of the study (the Teesside offshore wind farm); section
4 gives a summary of the optimization models; section 5 describes the simulation process;
section 6 explains how price scenarios were created and section 7 presents the results of the
study.

3 Context: scheduling the maintenance of a wind farm
in the UK

Teesside offshore wind farm consists of 27 turbines. The turbines are arranged in three
rows with 9 turbines in each row, see Fig. 3.1. Teesside offshore wind farm was fully
commissioned in 2013, and is approximately 11 years old. MCR (Major Component Re-
placement) such as gearbox replacement plays an important role in its O&M (Operation &
Maintenance). A good MCR strategy aims to minimize the resulting revenue loss as well as
the maintenance cost. In case the electricity price is constant such as in a CfD (Contract
of Difference) scheme, the revenue loss is directly proportional to the downtime of turbine
caused by MCR work. In the scenario of variable electricity price such as after the CfD
scheme, the revenue loss for the wind farm owner is determined by the downtime and the
electricity price.

There are many challenges in the MCR. The first one may be the availability of the
jack-up vessel. The offshore wind farm owner needs to plan about one year ahead and
book the vessel in advance. Ideally it would be good to know when the turbine components
are going to fail and how many turbine components are going to fail, particularly, the
coming one year or two years. The second may be the uncertainty in the weather such
as wind and wave conditions. When the vessel comes, the undesirable weather such as
storms can significantly impact the accessibility to the site and consequently prevent the
planned MCR work. Once the booked period passes, the vessel may need to leave due to its
schedule, causing delay in the MCR work. In the HIPERWIND project, we looks at the MCR
strategy from both a life-cycle optimization perspective and a short-term perspective. The
turbine component reliability modelling enables the offshore wind farm owner to anticipate
the turbine component failure through the life time of the offshore wind farm from the
beginning. In a given year, the owner can anticipate the turbine component failure in
all coming years til the end of the offshore wind farm. Through the optimization under
different scenarios, we want to verify the benefits of having this probabilistic view of the
failure events in the O&M strategy.

In the optimization, we considered a large number of failure scenarios through the life
time of the wind farm, and a number of wind and wave time series, as well as a set of
energy price scenarios.

The wind and wave time series are generated by the statistical models for weather time
series generation developed for asset management for offshore wind farms (LJDP19). These
models are variations of Auto Regressive Moving Average models (ARMA) and take into

3



HIPERWIND 4 THE MAINTENANCE SCHEDULES OPTIMIZATION MODEL

Figure 3.1: Turbine layout of Teesside offshore wind farm

account both the seasonality and the correlation between weather variables thanks to neural
network models. A statistic criteria was used to select 200 different year-round time series
that would capture the variability due to the stochastic nature of weather variables.

The wind and wave time series are used to evaluate the power production and the site
accessibility. The energy price scenarios are essential to evaluate the revenue loss. It also
enables us to investigate the optimal period for the MCR work in terms of wind and wave
conditions that impact the power production and the site accessibility, and the electricity
price that influences the revenue loss. Generally the MCR work should be placed in a
time period with good site accessibility and low revenue loss. The latter means low power
production and/or low electricity price.

4 The maintenance schedules optimization model
The scheduling optimisation problem is composed of 2 optimisation models as shown in
Figure 4.1

• The short term model optimises the schedule of maintenance over the year, for a
given number of replacements to be planned, on a selected price and meteorological
conditions scenario. Its outputs are both the optimal dates when to schedule each
operation and the resulting optimal cost (including maintenance cost and loss of
revenue due to non produced electricity during the operation).

• The long term stochastic model optimises the long term schedule, i.e. the number
of replacements to schedule each year. It uses as inputs the results of the short term
model for every year, every possible combination of numbers of replacements, aver-
aged on the price and meteorological scenarios. Its outputs are both the replacement

4
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schedule but also the optimal costs and revenues.

Figure 4.1: HiperWind Optimisation of maintenance models

We describe in the following subsection the assumptions taken, the data needed and the 2
optimization models.

4.1 Assumptions
The following assumptions have been taken in the model implementation:

• The model that we developed allows accounting for all components of big size (eg.
gearboxes, main bearings....). In this case study we only account for gearboxes, due
to lack of data for other components.

• Components could be replaced by new components or by refurbished ones, at a lower
cost. The choice of refurbished or new component is not included in the model.

• Even though some planned maintenance may exist, we assume that the operation we
are scheduling are always prioritized.

• A degradation factor is applied to the power generation of turbines.
• All turbines in a farm are identical, and the conditions applied to all turbines are also

identical. This means that, without maintenance, all turbines of the same farm have
the same power output, only depending on meteorological conditions, assuming that
these conditions are identical for all turbines in the farm. In other words, the wake
effects are not accounted for. It may be possible to integrate the wake effects later.

• Only one category of vessel (Jackup) is considered.
• The time for the vessel to reach the farm from the harbour is neglected.
• Components are always replaced before they fail. This assumption comes from the

fact that the expected failure scenarios have a yearly granularity which means we have
no information on the period of the year when failures may occur.

• Maintenance costs do not vary along the year. This assumption could very easily be
removed.

4.2 Inputs
The following inputs are used:

• Description of a Maintenance operation for each component category: a maintenance
operation is composed of a sequence of uninterruptible ’sub-operations’. Between sub-
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operations, there can occur interruptions (meaning than the vessel and crew will wait
for better meteorological conditions).

– Each sub-operation has a duration (expressed in days).
– Sub-operations cannot be interrupted.
– Each sub-operation is associated to given necessary conditions for accessibility

(maximum waves height and maximum wind speed). The sub-operation can
occur only when accessibility conditions are fulfilled.

• Constraints
– The maximum number of replacement operations in a year is set to 5.
– It is not possible to plan replacements in parallel.
– The maximum duration of a whole maintenance operation (including all sub-

operations and waiting periods) is set to 14 days.
• Failure probabilities: we used failures probabilities created during the project (Abr24):

1000 scenarios with the number of expected failures per year over 30 years.
• The maintenance cost is composed of:

– A fixed cost depending on the number of gearboxes to be replaced during the
year,

– A vessel mobilization cost for a maximum period of 35 days and a maximum
number of gearboxes of 5.

• Climate scenarios: we used 200 hourly correlated time series created during the
project (Kel22). these series include wind speed, wave height, and maximum potential
generation for one typical turbine.

• Price scenarios: we used 150 price scenarios. See section 6 for details about those
scenarios.

4.3 The Short term optimization model
In this section we will summarize the short-term model which is deeply described in (Cha23).
The short term model has the following characteristics:

• Time horizon: 1 year
• Time granularity: 1 day
• Decision variable: When in the year to plan each maintenance operation
• Objective function: minimize cost / maximize value (cost of maintenance, value of

selling electricity on the market)
• Constraints: operation constraints (linked to the availability of materials, boats, how

many items can fit on a boat, ....)
• Uncertainties: climate scenarios; price scenarios ; delays when vessels are available
• Results:

– The cost matrix C(y, {Nmaint, s) giving the optimal cost for each year y and
each scenario s of replacing Nmaint components.

6
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– For each year y and each scenario s, the best periods for replacing components,
in the case of Nmaint components

• Solving process: Monte-Carlo optimisation conducted on all scenarios, for all pos-
sible number of maintenance operations (from 0 to Nmax

fail (y) = 5). For each
year/scenario/number of gearboxes to be replaced, the optimization problem is solved
by a mixed integer quadratic programming algorithm.

The results of the short-term problem for each year and each possible number of main-
tenance operations, averaged on all meteorological and prices scenarios (i.e. the optimal
costs and optimal schedules) are used as inputs to the long-term problem which computes
the optimal number of maintenance operations to be scheduled each year. The short term
model is then used to define the optimal schedule in each year, given the optimal number
of operations planned this year (results of long-term problem).
This problem can be written as follows:

Cshort(y, {Nmaint
y }) =

min
{ti,j ,i∈[0,Iy−1],j∈[0,J−1]}

FC({Nmaint
y }) + WC({ti,j, i ∈ [0, Iy − 1], j ∈ [0, J − 1]})

+LR({ti,j, i ∈ [0, Iy − 1], j ∈ [0, J − 1]}) + V M({ti,j, i ∈ [0, Iy − 1], j ∈ [0, J − 1]})


with:
• FC({Nmaint

y }) is the fixed part of the maintenance cost, depending only on the
number of maintenance. This cost is then fixed in our optimisation problem;

• WC({ti,j, i ∈ [0, Iy − 1], j ∈ [0, J − 1]}) is the waiting cost, depending on the
schedule of the maintenance;

• LR({ti,j, i ∈ [0, Iy − 1], j ∈ [0, J − 1]}) is the lost revenue, corresponding to periods
when some turbines are under maintenance, and then do not produce electricity. This
value depends on the schedule of the maintenance;

• V M({ti,j, i ∈ [0, Iy − 1], j ∈ [0, J − 1]}) is the mobilisation cost; It depends on the
number of necessary mobilisation, given that a mobilisation has a fixed cost for a
given duration, and can include up to e.g. 5 operations.

The decisions variables are all the dates when a sub-block of a maintenance operation is
starting: {ti,j, i ∈ [0, Iy −1], j ∈ [0, J −1]}, with ti,j being the first day of the jth subblock
of the ith maintenance operation.
submitted to the following constraints:
(C-1) All the maintenance sub-blocks are scheduled in the year:

∀i ∈ [0, Iy − 1], ∀j ∈ [0, J − 1], ti,j ≤ Ty − 1

(C-2) Sub-blocks in a maintenance operations are scheduled one after the other:

∀i ∈ [0, Iy − 1], ∀j ∈ [0, J − 2], ti,j+1 ≥ ti,j + dj

7
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(C-3) Maximum duration of a maintenance operation:

∀i ∈ [0, Iy − 1], ti,J−1 + dc
J−1 − ti,0 ≤ D

(C-4) A turbine is not producing during a maintenance; We denote op(t) the number of
maintenance operations which are ongoing at time t with

op(t) =
Iy−1∑
i=0

opi(t)

opi(t) is then defined as follows:
• Before the first day of the first sub-block:

∀i ∈ [0, Iy − 1], ∀t < ti,0, opi(t) = 0

• Between the first day of the first sub-block and the last day of the last sub-block
of a maintenance operation:

∀i ∈ [0, Iy − 1], ∀t ∈ [ti,0; ti,J−1 + dc
J−1 − 1], opi(t) = 1

• Between 2 maintenance operations, ie between the last day of the last sub-block
of a maintenance and the first day of the first sub-block of the next maintenance
operation:

∀i ∈ [0, Iy − 2], ∀t ∈]ti,J−1 + dJ−1 − 1; ti+1,0[, opi(t) = 0

• After the last day of the last sub-block :

∀i ∈ [0, Iy − 1], ∀t ∈]tIy−1,J−1 + dJ−1 − 1; Ty[, opi(t) = 0

(C-5) Maximum number of parallel operations:

∀t ∈ [0, Ty − 1], op(t) ≤ P

(C-6) Waiting periods occur between subblocks; We will denote w(t) the number of main-
tenance operations that are ’waiting’ at time t with

w(t) =
Iy−1∑
i=0

wi(t)

wi(t) is then defined as follows:
• Before the last day of the first sub-block: no waiting:

∀i ∈ [0, Iy − 1], ∀t < ti,0 + d0 − 1, wi(t) = 0

• During a sub-block of a maintenance operation: no waiting

∀i ∈ [0, Iy − 1], ∀j ∈ [0, J − 1], ∀t ∈ [ti,j; ti,j + dj − 1], wi(t) = 0

8
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• Between sub-blocks of a maintenance operation: waiting

∀i ∈ [0, Iy − 1], ∀j ∈ [0, J − 2], ∀t ∈]ti,j + dj − 1; ti,j+1[, wi(t) = 1

• Between maintenance operations: no waiting

∀i ∈ [0, Iy − 2], ∀t ∈]ti,Jc−1 + dJ−1 − 1; ti+1,0[, wi(t) = 0

• After the last day of the last sub-block of the last maintenance operation: no
waiting

∀i ∈ [0, Iy − 1], ∀t ∈]tI−1,J−1 + dJ−1 − 1; Ty[, wi(t) = 0

(C-7) Maximum number of parallel operations:

∀t ∈ [0, Ty − 1], w(t) ≤ P

(C-8) Accessibility conditions: the jth sub-block of a maintenance operation can occur only
if the required accessibility condition is fulfilled

∀i ∈ [0, Iy − 1], ∀t ∈ [ti,0; ti,J−1 + dJ−1 − 1]At,s ≥ Aj

(C-9) Schedule and availability conditions: the ith maintenance operation cannot start
before a specific date,

∀i ∈ [0, Iy − 1], ti,0 ≥ T i

(C-10) Schedule and availability conditions: the ith maintenance operation cannot end after
another specific date,

∀i ∈ [0, Iy − 1], ti,J−1 + dJ−1 − 1 ≤ T i

(C-11) Mobilisation cost: a vessel is mobilised for a maximum duration. If it is necessary to
mobilise it many times then the cost increases.

m =
Iy−1∑
i=1

zi

where:
• if the next operation ends before the end of the mobilisation period, no addtional

cost:
if ti,J−1 ≤ ti−1,0 + DM then zi = 0

• if the next operation ends after the end of the mobilisation period, there is an
addtional cost:

if ti,J−1 > ti−1,0 + DM then zi = 1

where:
- y is the year index (useful for data depending on the year)
- s ∈ S is the scenario index

9
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- Ty is the number of days of the considered year
- {ht} are the indexes of the hours of the day t, with {ht} ∈ [24 ∗ t; 24 ∗ (t + 1)[
- Hy is the number of hours in the year y
- {Nmaint

y } is the number of maintenance to be scheduled the year y
- ti,j is the start date of the jth block of the ith maintenance operation
- Iy is the number of maintenance operations to be scheduled the year y
- J is the number of sub-blocks composing a maintenance operation
- dj is the duration of the jth sub-block of a maintenance operation
- D is the maximum duration of a maintenance operation
- Nturbines is the number of turbines in the farm
- op(t) the number of turbines in maintenance at time t
- opi(t) = 1 if the ith maintenance operation is occurring at t, opi(t) = 0 if not.
- w(t) the number of turbines which are ’in the middle’ of a maintenance operation

(waiting)
- wi(t) = 1 if t corresponds to a waiting period during the ith maintenance operation,

wi(t) = 0 if not.
- m the number of necessary vessel mobilisations
- M the unitary mobilisation cost of the vessel
- DM the maximum duration of one vessel mobilisation (which can be used for more than

one operation)
- P the maximum number of parallel operations
- Wy,t is the cost of waiting during 1 day, at day t, in the year y
- λh,s is the marginal cost of electricity for the hour h of the year, in the scenario s
- P h,s is the power generated by 1 turbine at hour h for the scenario s if the turbine is

available.
- At,s describes the accessibility conditions. At,s can take a limited number of integer

values {0, Ai, i ∈ [0; NA]} where NA is the number of possible accessibility situations;
The biggest At,s is, the more accessible the conditions are, starting from At,s = 0 where
it is impossible to conduct any kind of operation to At,s = maxAi,i∈[0;NA] where all
operations are possible.

- Aj is the minimum required accessibility conditions for the jth sub-block of an operation.
Aj ∈ {0, Ai, i ∈ [0; NA]}

Without the mobilisation constraints, the short term problem is solved using a MILP solver.
With this constraint it is solved with a MIQC solver.

4.4 The Long Term optimization model
In this section we will summarize the long-term model which is deeply described in (Cha23).
The long term model has the following characteristics:

• Time horizon: 25 years.
• Time granularity: 1 year (failure data are given with year granularity)
• Decision variable: How many gearboxes are replaced each year of the horizon
• Objective function: minimize cost (including maintenance cost, waiting cost, and cost

of non-sold electricity). The objective function is a function of the costs computed
by the short-term model.

10
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• Constraints:
– Maximum number of maintenance operations per year (set to 5)
– Components are always replaced before failure; Here it means that if the failure

model predicts a failure of a component in year y, it has to be replaced latest
during the year y-1.

– Budget constraints (not used in the simulations);
• uncertainties: failures probabilities, which are interpreted as the number of equipment

which must have been replaced before year Y;
• Solving process: The long term problem is solved by a stochastic optimisation ap-

proach, which can either be a deterministic or a stochastic dynamic programming.
This problem can be written as follows:

min
Ny,s,y∈[0;Y [,s∈[0,S[

 E
s∈[0,S[

Y −1∑
y=0

C(y, {Ny,s



C(y, {Ny,s}) is the mean optimal cost of scheduling Ny,s operations in the year y.
The decision variables are {Ny,s, y ∈ [0; Y [, s ∈ [0, S[}, where Ny,s is the number of
maintenance operations scheduled the year y in the scenario s.
The constraints are the following:
(C-1) Enough maintenance operations are scheduled so that failures occur after replace-

ments:
∀y ∈ [0; Y [, ∀s ∈ [0, S[,

y∑
x=0

Nx,s ≥
y∑

x=0
N cum

y,s

(C-2) Upper bound on the number of replacements each year for each category:

∀y ∈ [0; Y [, ∀s ∈ [0, S[, Ny,s ≤ Ny

(C-3) Upper bound on the total number of replacements each year:

∀y ∈ [0; Y [, ∀s ∈ [0, S[, Ny,c,s ≤ Ny

(C-4) Upper bound on the budget per year:

∀y ∈ [0; Y [, ∀s ∈ [0, S[, C(y, s, Ny,s) ≤ By

(C-5) Upper bound on the total budget:

∀s ∈ [0, S[,
Y −1∑
y=0

C(y, s, Ny,s) ≤ B

(C-6) Upper bound on the total number of replacements:

∀s ∈ [0, S[,
Y −1∑
y=0

Ny,s ≤ CN
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where:
• Y is the number of years of the horizon;
• S is the number of scenarios (note that we are not referring to the same scenarios as

in the short term model as here the uncertainties are the failure probabilities;
• CN is the maximum possible number of operations to be scheduled
• CN y,s is the cumulative number of expected failures occurred before year y in the

scenario s;
• Ny is the maximum number of operations that can be scheduled during the year y

• Ny is the maximum number of operations that can be scheduled during the year y

• By is the maximum budget that can be spent during the year y

• B is the maximum budget that can be spent during the whole period.
• C(y, {Ny,s}) are the costs computed by the short term model.
This problem is solved by a stochastic dynamic programming algorithm.

5 Simulations
For being able to compare different maintenance scheduling strategies, we have implemented
a simulator.
For doing so, we have simulated over all the failure scenarios the computation of mainte-
nance schedules with different strategies:

• For the long term (how many replacements are scheduled each of the coming 25
years), 3 cases were simulated:

– Use of a hand-made reference schedules. We detail below how we created
different reference schedules.

– Generation of a reference schedules by the simulator, from an optimistic refer-
ence hand-made schedule: this means that we simulated the operation process
as it could happen. Each year, the chosen reference schedule is applied unless
the expected number of failures for the given year leads to the situation where
the total number of failures since the beginning of the period added to the ex-
pected number of failures in the current year is bigger that the total number
of replacements already done plus the scheduled number of replacements in the
given year. In this case the number of replacements of the current year will be
increased (limited to 5);

– Use of the results of the stochastic optimisation adapted in the simulation with
the same method as the one described above to adapt the reference schedule.

• For the short term (when are the replacements scheduled during the year), 3 cases
were simulated:

– Optimisation of the schedule including minimisation of the loss of revenue in
the case when the energy is sold at a market price;

– Optimisation of the schedule including minimisation of the loss of revenue in
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the case when the energy is sold at a given (and fixed) strike price;
– Optimisation of the schedule without accounting for the valuation of the energy

sold (at market or fixed strike price); This case is used as the ’not optimised’
case. In order to make the results closer to the real operational process, we
added a few constraints to the short term optimisation:

∗ not-before and not-after constraints in order to ’force’ the model to schedule
the maintenance mostly during the summer period (when prices are usually
lower)

∗ very low waiting costs in order to avoid non necessary waiting periods.

5.1 Probabilising the scenarios
The first step consisted in probabilising the failure scenarios. It appears that the same
scenario is simulated many times in the 1000 scenarios which are available. In order to
lower the computation times and analyse the scenarios, we applied the following methos to
obtain a set of 104 probabilised scenarios:
From the Sc

tot failure scenarios of each component, we obtain Sc
prob scenarios, where scenario

s has probability πs. We then transform these scenarios which give the number of failures
F c

s,y for the component c in year y for scenario s in scenarios of cumulated failures CF c
s,y,

where
∀s ∈ [0, S[, ∀c ∈ [0, C[, CF c

s,y =
y∑

x=0
F c

s,y

Figure 5.1 shows how the 1000 scenarios are converted into 104 probabilised scenarios: each
color represents one probabilised scenario. The probability of each probabilised scenarios is
computed as the share of scenarios in each probabilised scenario.

Figure 5.1: Methodology for computing probabilised scenarios

Figure 5.2 shows the 104 probabilised scenarios of expected failures per year.
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Figure 5.2: Expected number of failure expectations per year - 104 probabilised scenarios

Figure 5.3 shows the probability of each of the 104 probabilised scenarios of expected failures
per year.

Figure 5.3: Probability of the 104 probabilised scenarios of expected number of failure per
year

Figure 5.4 shows the total number of failures in each of the 104 probabilised scenarios.
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Figure 5.4: Cumulated number of expected failures in the 104 probabilised scenarios

5.2 The reference long-term maintenance schedules
As we do not have access to the real reference schedule used in the wind farm, we created
a set of reference schedules that are consistent with the scenarios of expected failures. We
used those reference schedules for conducting simulations using the short-term optimization
only.
As the maximum number of cumulated gearbox replacement in our case is equal to 5 replacements ∗
25 years = 125, we cannot create a reference schedule which would allow comparison with
long term optimisation results based on the expected number of failures scenarios, as the
worst scenarios accounts for 161 failures. We then chose to define 5 different reference
schedules, each one consistent with the x% failure scenarios with lower cumulated number
of failures. We created 5 different reference schedules which are shown in Figure 5.5:

• Schedule 85% replaces 2 gearboxes per year in the first 22 years, then 3 per year.
This is consistent with the first 85% failure scenarios, in which the worst case scenario
accounts for 52 cumulated failures;

• Schedule 86.7% replaces 2 gearboxes per year in the first 17 years, then 3 per year.
This is consistent with the first 86.7% failure scenarios, in which the worst case
scenario accounts for 57 cumulated failures;

• Schedule 90% replaces 2 gearboxes per year in the first 10 years, then 3 per year.
This is consistent with the first 90% failure scenarios, in which the worst case scenario
accounts for 64 cumulated failures;

• Schedule 95% replaces 2 gearboxes per year in the first 6 years, then 3 per year for
9 years, then 4 per year. This is consistent with the first 95% failure scenarios, in
which the worst case scenario accounts for 77 cumulated failures;

• Finally, schedule 99.5% replaces 5 gearboxes per year. This is consistent with the first
99.5% failure scenarios, in which the worst case scenario accounts for 125 cumulated
failures;
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Figure 5.5: Reference long-term maintenance schedules

5.3 The optimised schedules
Optimised schedules are results of the stochastic optimisation which was conducted on a
scenario tree. This scenario tree is created out of the probabilised scenarios as shown in
Figure 5.6 (Note that these figures are only illustrating the tree generation and are not
based on real data). At each time step, a leaf of the tree is created by grouping scenarios
with identical past. During the optimisation decisions are taken at each of those leafs: the
optimiser knows the past but has a a probabilistic view of the expected possible futures.
Decisions are thus non anticipative.

Figure 5.6: Illustration of creating the scenario tree out of probabilised scenarios

Figure 5.7 shows the resulting scenario tree.
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Figure 5.7: Illustration of scenario tree created out of the probabilised scenarios

We applied the long-term stochastic optimization algorithm to the scenario tree created
by using the 99.5% ”best” probabilised scenarios, in order to obtain results which can be
compared to those obtained on the 99.5% reference schedule.
Figure 5.8 shows the optimal decisions to be taken for each of the probabilised scenarios. For
2 given probabilised scenarios, at a time step in which the past expected failures are identical,
the optimal decision is be also identical. This long-term optimisation was conducted using
the short-term optimisation with price valuation.

Figure 5.8: Optimal decisions computed by the stochastic optimization

5.4 The simulator
We have implemented a simulator which has the following behavior (see Figure 5.9):
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Figure 5.9: Hiperwind simulator process for one expected failures scenario

• For each probabilised scenario:
– Get the reference schedule depending on the strategy:

∗ For the case ’Reference schedule’: we used a reference schedule with 1
replacement per year over the first 10 years, 2 replacement per year over
the following 10 years and 3 replacements per year over the last years.

∗ For the case ’Optimised’: the schedule obtained by following the scenario s
path in the decision tree.

– Recompute the schedule to adapt it to the failures: for each year y:
∗ Compute the number of cumulated failures (CF (y − 1)) before year y in

scenario s

∗ Compute the number of cumulated planned replacements (CP (y − 1))
before year y in scenario s

∗ if the number of replacements for year y in the schedule is such that

CF (y − 1) + EF (y) < CP (y − 1) + D(y)

where EF (y) is the expected number of failures in year y and D(y) the
decision proposed by the schedule, then increase D(y) such that

CF (y − 1) + EF (y) = CP (y − 1) + D(y)

and D(y) can not exceed 5.
– Get the optimal cost and optimal short-term schedule for year y and scenario

s. These optimal short-term schedules and costs have been pre-computed by
the short term optimization which is applied to all years and all combinations
of numbers of replacements.

6 The price scenarios
We have generated price scenarios by using an electricity system model: plan4res.
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6.1 The plan4res electricity system model
plan4res is an electricity system optimization and simulation tool, composed of the 3 fol-
lowing models:

• A Capacity Expansion Model (CEM) aimed at adapting the electricity mix.
• A Seasonal Storage Valuation model (SSV) aimed at optimizing the management

of seasonal storages. It computes the Bellman values (= cost-to-go functions) that
represent the future expected economic value of the seasonal storages levels at time
stages. This is necessary to know when to best use a “free” but limited and uncertain
resource such as water inflows to large hydropower reservoirs: should the hydropower
plant produce now and discharge part of its stored water, for example to avoid starting
up a costly coal plant to meet demand, or should water be kept for a latter use, for
example because present demand is low and RES generation is sufficient?

• A Simulation Model (SIM), aimed at optimizing the short-term operation of the
system. The simulation is run on every scenario one after the other using a Unit
Commitment model (UC) sequentially on the whole time period. The cost-to-go
functions computed by the SSV are used as a variable cost for the generation of
seasonal storages. The unit commitment problem (UC) solves the short-term hori-
zon problem (short-term meaning “corresponding to a stage” usually weekly), where
operational decisions are provided at one stage s ∈ S, in a deterministic setting,
considering the expected future “value” that seasonal storage units can bring to the
system via the cost-to-go function.

Various kinds of constraints and flexibilities involving both generation, storage and con-
sumption are dealt with:

• Dynamic operation constraints of power plants (ramping constraints, minimum shut-
down duration, . . . )

• Dynamic operation of storage (including battery-like storages and complex hydro-
valleys modelling)

• Demand-Response (including e.g. household dynamic consumption load-shifting or
load curtailment)

• Transmission Network capacities...
The plan4res model has been developped in the Horizon 2020 plan4res project1 (see (plab)).
This model is open source and can be retrieved on github (see (plaa)). We have ran the
plan4res model on datasets from the Open ENTRANCE project (see (ope)). Those dataset
consist in pathways for the European energy system from 2018 to 2050, with a 5 years
timestep. Those pathways consist in a description of the energy system: energy demands
per uses and installed capacities. Those pathways are described in (Aue20) and the corre-
sponding data can be retrieved in (Loe23). 4 different meta-scenarios were implemented.
The plan4res model was used to simulate the behavior of the European electricity system
on the years 2018, 2025, 2030, 2035, 2040, 2045 and 2050 at country and hour resolution.
We then obtained among other results marginal costs timeseries for each European country.
As plan4res is a stochastic model which accounts for meteorological scenarios (tempera-

1This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 773897.
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ture, wind, radiation, hydrology), we obtained 37 marginal costs scenarios for each Open
ENTRANCE dataset.
In order to get timeseries from 2018 to 2050, we estimated the seasonnality on the existing
years. Out of these estimated seasonnality, we interpolated the seasonality on the missing
years and simulated a noise estimated on the values and seasonalities of the existing years
in order to get data on the missing years.
Figure 6.1 shows an example of marginal costs time serie.

Figure 6.1: Hourly marginal costs over 1 year

7 Results

7.1 Results of the short-term optimisation
We have first ran the short-term optimisation on all years of the horizon, for all numbers
of scheduled maintenance (from 1 to 5), on all meteorological and price scenarios (for the
case with price valuation). We show below the results in terms of cost deviation between
the optimised and non-optimised variants, averaged over all meteorological (and price for
the case with price valuation) scenarios.

7.1.1 Price valuation case

Figures 7.1, 7.2 and 7.3 show the deviation between the case where the optimization was
done with price valuation and the case with no real optimization:

• The average loss of energy : we can see in 7.1 that, depending on the years, the
optimization may lead to losing more or less energy;

• The average number of ’lost’ hours (7.3) -hours during which the turbine is ’in
maintenance’- : the optimization always lead to more lost-hours.

• The average energy cost : we can see in 7.2 that for all years and numbers of
maintenance scheduled, the short-term optimization leads to increased revenues. In
the last years, the increase is much lower than in the first years, which can be explained
by the global increase in prices from 2040 in the data that we used (the share of
renewable increases in the system, making the prices more correlated to the renewable
potential generation).
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Figure 7.1: Difference in energy loss (optimised vs non optimised) - Price valuation

Figure 7.2: Difference in revenue loss (optimised vs non optimised) - Price valuation
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Figure 7.3: Difference in off-hours (optimised vs non optimised) - Price valuation

7.1.2 Strike valuation case

Figures 7.4, 7.5 and 7.6 show the deviation between the case where the optimization was
done with strike valuation and the case with no real optimization:

• The average loss of energy : we can see in 7.4 that, the optimization always leads to
losing less energy; The average loss of energy is nearly identical among the years.

• The average number of ’lost’ hours (7.6)(ie hours during which the turbine is ’in
maintenance’): the optimization always lead to less lost-hours.

• The average energy cost (7.5) is proportional to the average energy loss.

Figure 7.4: Difference in energy loss (optimised vs non optimised) - Strike valuation
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Figure 7.5: Difference in revenue loss (optimised vs non optimised) - Strike valuation

Figure 7.6: Difference in off-hours (optimised vs non optimised) - Strike valuation

7.2 Results on reference long-term schedules
In this section we will describe the results obtained when simulating on each on the 5
reference schedules as described in 5.2. For each schedule, we have conducted simulations
on every failure scenario, following the simulation process in 5.4, and computed the average
(over the failure scenarios) energy cost (ie value of the energy which could have been sold
during the maintenance periods), energy loss and number of hours in which the turbine is
down due to the maintenance. These simulations have been done in both cases: valuation
by the price scenarios (see 6), or valuation by a fixed strike price (150 £). In order to get
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a basis, We also have ran simulations on the same long-term reference schedules using the
’no short-term optimisation’ (i.e. valuation by a fixed price of 0, low waiting cost and force
the algorithm to choose summer periods).

7.2.1 Price valuation case

Figures 7.7, 7.8 and 7.9 show the deviation to the basis for each of the 5 reference schedules
for:

• The average loss of energy : we can see in 7.7 that apart from the reference schedule
99.5%, the short-term optimization leads to losing less energy.

• The average energy cost : we can see in 7.8 that for all scenarios, the short-term
optimization leads to increased revenues.

• The average number of ’lost’ hours (ie hours during which the turbine is ’in mainte-
nance’ : we can see in 7.9 that the short term optimization leads to more lost hours.
This is explained by the fact that the short-term optimization may choose to wait
between 2 sub-operations to take advantage of a period with very low price (and
thus very low loss of revenue) but where it is necessary to interrupt the maintenance
operation.

Figure 7.7: Difference in energy loss (optimised vs non optimised) - Reference schedules -
Price valuation
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Figure 7.8: Difference in revenue loss (optimised vs non optimised) - Reference schedules
- Price valuation

Figure 7.9: Difference in off-hours (optimised vs non optimised) - Reference schedules -
Price valuation

7.2.2 Fixed Strike price valuation case

Figures 7.10, 7.11 and 7.12 show the deviation to the basis for each of the 5 reference
schedules for:

• The average loss of energy : we can see in Figure 7.10 that the short-term optimization
leads to losing less energy.

• The average energy cost : we can see in Figure 7.11 that for all scenarios, the
short-term optimization leads to increased revenues.

• The average number of ’lost’ hours (ie hours during which the turbine is ’in mainte-
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nance’ : we can see in Figure 7.12 that the short term optimization always leads to
less lost hours.

Figure 7.10: Difference in energy loss (optimised vs non optimised) - Reference schedules
- Strike valuation

Figure 7.11: Difference in revenue loss (optimised vs non optimised) - Reference schedules
- Strike valuation
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Figure 7.12: Difference in off-hours (optimised vs non optimised) - Reference schedules -
Strike valuation

7.3 Results of the long-term optimization
In this section we will show comparisons of the cases:

• Simulation over the recalculated reference schedule without short term optimization;
• Simulation over the recalculated reference schedule with short term optimization;
• Simulation over the recalculated optimised schedule without short term optimization;
• Simulation over the recalculated optimised schedule with short term optimization;

in the cases with price valuation and with strike valuation.

7.3.1 The optimized long-term schedules

We ran the long-term optimization algorithm on all different cases. We show below the
log term optimized schedule as computed by the algorithm and the schedule which was
adapted by the simulator as described in 5.4.

• Case without short term optimization
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Figure 7.13: Optimised long-term schedule without short-term optimization

The adapted schedule is very close to the original optimised schedule.
• Case Strike valuation

Figure 7.14: Optimised long-term schedule with strike valuation

The adapted schedule is very close to the original optimised schedule.
• Case Price valuation
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Figure 7.15: Optimised long-term schedule with price valuation

The adapted schedule is very close to the original optimised schedule.

7.3.2 The reference long-term schedule

Within the simulation (see section 5.4), we created an adapted long-term reference sched-
ules, which was used in the comparison with the optimized reference schedules. This
schedule is shown below in Figure 7.16

Figure 7.16: Adapted reference long-term schedule

7.3.3 The resulting maintenance schedules

We will show examples of the schedules obtained when simulating on the 57th probabilised
scenario, in the case with price valuation. (We chose the 57th scenario by chance, we could
have chosen any other...).
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• Optimised (adapted) long-term schedules Figures 7.17, 7.18 and 7.19 show
the schedules for each year in the case with short-term optimization (blue lines) and
without short term optimization (red lines). The schedule used is the one computed by
the long-term stochastic optimization, which has been adapted during the simulation.

Figure 7.17: Maintenance schedules: case with optimized long-term schedules, price valu-
ation, years 2024-2031
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Figure 7.18: Maintenance schedules: case with optimized long-term schedules, price valu-
ation, years 2032-2039

Figure 7.19: Maintenance schedules: case with optimized long-term schedules, price valu-
ation, years 2040-2048

• Reference (adapted) long-term schedule Figures 7.20, 7.21 and 7.22 show the
schedules for each year in the case with short-term optimization (blue lines) and
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without short term optimization (red lines). The schedule used is the long-term
reference (as defined in section 7.3.2), which has been adapted during the simulation.

Figure 7.20: Maintenance schedules: case with reference long-term schedule, price valua-
tion, years 2024-2031

Figure 7.21: Maintenance schedules: case with reference long-term schedule, price valua-
tion, years 2032-2039
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Figure 7.22: Maintenance schedules: case with reference long-term schedule, price valua-
tion, years 2040-2048

7.3.4 Impacts on energy and revenue losses

We show here the impacts in terms of average (over the price - for the price valuation
case - and meteorological scenarios and over the years) number of maintenance, loss of
energy, energy cost and number of lost hours (ie hours during which one turbine is off dur
to maintenance) on each probabilised expected failure scenario that was simulated.
Case Price valuation
Figure 7.23 shows the average number of maintenance per failure scenario. We can see
that using the long term stochastic optimization leads to less maintenance in the easier
scenarios. The number of maintenance is the same in the cases with/without short term
optimization (as the number of maintenance only depends on the expected failures scenarios
and on the long-term algorithm).
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Figure 7.23: Average number of maintenance per failure scenarios - Case with price valua-
tion

Figure 7.24 shows the average loss of energy (in MWh) per failure scenario. We can see
that using the long term stochastic optimization leads to less lost energy, in particular in
the easier scenarios (which is mainly due to the lower number of maintenance). In the
cases with optimised long-term schedules, the energy loss is slightly higher in the case with
short-term optimization in most of the scenarios. This is consistent with what was observed
in the analysis of deterministic long-term scenarios (see section 7.1).

Figure 7.24: Average loss of energy per failure scenarios - Case with price valuation

Figure 7.25 shows the average loss of revenue (in £) per failure scenario. We can see that
using the long term stochastic optimization leads to less revenue loss in all scenarios. Also
using the short-term optimization allows to lower this loss of revenue in most cases apart
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from the very difficult scenarios with high number of failures (in which there is a reduction
but it is quite low and thus not visible on the graph).

Figure 7.25: Average loss of revenue per failure scenarios - Case with price valuation

Figure 7.26 shows the average number of hours without production due to maintenance
operations per failure scenario. We can see that using the long term stochastic optimization
leads to less lost hours in the easier scenarios (and slightly more in some difficult scenarios
although the difference being very small it is not visible in the graph). We can also see that
in the cases with short-term optimization, the number of lost hours is slightly increased,
which is consistent with the results on the deterministic long-term schedules (see section
7.1).

Figure 7.26: Average number of lost hours per failure scenarios - Case with price valuation

Case Strike valuation Figure 7.27 shows the average number of maintenance per fail-
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ure scenario. We can see that using the long term stochastic optimization leads to less
maintenance in the easier scenarios. The number of maintenance is the same in the cases
with/without short term optimization (as the number of maintenance only depends on the
expected failures scenarios and on the long-term algorithm).

Figure 7.27: Average number of maintenance per failure scenarios - Case with strike valu-
ation

Figure 7.28 shows the average loss of energy (in MWh) per failure scenario. We can see
that using the long term stochastic optimization leads to less lost energy in the easier
scenarios (which is mainly due to the lower number of maintenance). Using the short-term
optimization leads to high reduction of energy losses in all cases. This is consistent with
what was observed in the analysis of deterministic long-term scenarios (see section 7.1).

Figure 7.28: Average loss of energy per failure scenarios - Case with strike valuation
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Figure 7.29 shows the average loss of revenue (in £) per failure scenario. The graph is
strictly identical as the above (figure 7.28, as loss of revenue is in the strike cas proportional
to loss of energy.

Figure 7.29: Average loss of revenue per failure scenarios - Case with strike valuation

Figure 7.30 shows the average number of hours without production due to maintenance
operations per failure scenario. We can see that using the long term stochastic optimization
leads to less lost hours in the easier scenarios (and slightly more in some difficult scenarios
although the difference being very small it is not visible in the graph). Using the short-term
optimization also reduces the number of lost hours, which is consistent with the results on
the deterministic long-term schedules (see section 7.1).

Figure 7.30: Average number of lost hours per failure scenarios - Case with strike valuation
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7.4 Market Factor
7.4.1 Definition

In order to get some indicators of the market value brought by the maintenance schedules
potimization, we computed the market factor in all different cases with Price valuation,
such as:

for each year y, MF = Revenue(y)
Energy(y)

with
Energy(y) = 1

Sp ∗ Sm ∗ Sf

∑
sp∈Sp

∑
sm∈Sm

∑
sf ∈Sf

∑
h∈y

W (h, sm, sp, sf )

and

Revenue(y) = 1
Sp ∗ Sm ∗ Sf

∑
sp∈Sp

∑
sm∈Sm

∑
sf ∈Sf

∑
h∈y

p(y, h, sp) ∗ W (h, sm, sp, sf )

with:
• Sp is the number of price scenarios, {sp ∈ Sp} is the set of price scenarios
• Sm is the number of meteorological scenarios, {sm ∈ Sm} is the set of meteo scenarios
• Sf is the number of expected failures scenarios, {sf ∈ Sf} is the set of expected

failures scenarios
• {h ∈ y} is the set of all hours in year y

• p(y, h, sp) is the price at hour h of year y for the price scenario sp

• W (h, sm, sp, sf ) is the generation of the wind farm at hour h of year y for the
price scenario sp, the meteo scenario sm and the expected failures scenario sf . This
generation is a results of the optimisation, it accounts for the energy not produced
during optimally scheduled maintenance.

7.4.2 Impact of short-term optimization

For each of the 5 reference long-term scenarios such as described in 5.2 we have computed
the average market factor on each year. They are shown in Figures 7.31, 7.32, 7.33, 7.34,
and 7.35. We can see that the market factor is always higher in the case with short term
optimization.
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Figure 7.31: Market factor - reference long-term schedule 85% - cases with/without short-
term optimization

Figure 7.32: Market factor - reference long-term schedule 86.7% - cases with/without
short-term optimization
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Figure 7.33: Market factor - reference long-term schedule 90% - cases with/without short-
term optimization

Figure 7.34: Market factor - reference long-term schedule 95% - cases with/without short-
term optimization
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Figure 7.35: Market factor - reference long-term schedule 99.5% - cases with/without
short-term optimization

7.4.3 Impact of long-term optimization

We have computed the average market factor on each year for the cases simulated by our
simulator. Figure 7.36 shows the result in the cases with long-term optimization/adapted
reference schedule and short-term optimized or not optimized.
We can see that the long-term optimization increases the market factor only in years between
2034 and 2047, while the short-term optimization always increases it (as shown in previous
section).

41



HIPERWIND 7 RESULTS

Figure 7.36: Market factor - optimised vs not optimised long-term schedule

This may be linked to an increase in the prices and in the share of the offshore windpower
in the electricity mix in UK as shown in figures 7.37 and 7.38

Figure 7.37: Share of Offshore Wind Power in the UK electricity mix in the Open EN-
TRANCE scenarios, average on scenarios

We can see an increase in the Offshore wind share in the electricity mix of the United
Kingdom from 2031, reaching 10% in 2034 and nearly 20% in 2050.
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Figure 7.38: Value of the generation of the Teesside offshore wind farm, per day from 2023
to 2050, based on marginal costs

Figure 7.38 shows the average over all price and meteorological scenarios of the value of
the electricity, every day from 2023 to 2050. This value for one day is computed as the
sum on all hours of the day of the product between the price and the maximum possible
generation (depending on meteorological scenarios) of the farm, without any off period due
to maintenance. We can see a high increase starting in 2031, mainly due to an increase in
the electricity prices, due to a more tense electricity system.

8 Conclusion, limitations and perspectives

8.1 Main results
The main conclusions of our study are:

• Using optimization algorithms to compute the maintenance schedules of a wind farm
leads to an increase in the expected revenue;

• In some cases the optimal schedules may comprise longer periods of maintenance
thus an increased number of days without generation;

• The increase in the expected revenue is highly dependent on the prices (in the case
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of price valuation);
• Optimising the schedules within a year increases the market value of the wind farm

by an average of 3%;

8.2 Limitations
The case study was conducted with the following limitations:

• Only one type of wind turbine component (gearboxes) was included;
• Some assumptions were taken on the modelling of the maintenance operations (only

one kind of vessel, not accounting for delays in the vessel arrival to the windfarm...)
• The prices and the meteorological scenarios were generated out of 2 different models

and hypothesis although there may exist a correlation between the market prices and
the meteorological conditions.

– The prices generated by the plan4res model are indeed correlated with mete-
orological scenarios -including among others meteorological variables such as
temperature and wind speed as well as hourly maximum wind power depending
on the wind speed (Cha20)-. Nevertheless, the scenarios used as plan4res inputs
are available only at a Nuts2 (Nut) granularity and as the plan4res runs were
done for the whole Europe with country resolution, these scenarios needed to be
aggregated at country level. Moreover, the scenarios used as inputs to plan4res
do not include the waves height.

– For the current study it was necessary to use :
∗ meteorological scenarios which:

· include not only the wind speed but also the wave heights;
· in which wind speed and wave height were generated alltogether as a

correlation between those 2 variables does exist;
· were generated at very low granularity (a few kimometers around the

wind farm) given that wind speed and wave heights can be very local
phenomena.

∗ price scenarios which:
· cover the whole life duration of the wind farm,
· include correlations between meteorological conditions (wind speed,

temperature) and power generation of renewable energy (in particu-
lar wind farms) as well as electricity demand

This excludes the statistical approaches based on using historic price sce-
narios (as those approaches are valid only if the electricity system does not
change too much, which will not be the case in the 25 coming years, given
the planned energy transition in Europe), meaning that physical electricity
system models need to be used. Because of the high level of interconnec-
tion in Europe, prices in one country are strongly correlated with prices in
other countries, meaning that a model at european level should be used.
Solving this (stochastic) model at the necessary granularity for accounting
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for the local meteorological conditions is today out of reach, meaning that
studies including correlated prices and low-granularity wind-speed and wave
eights are not yet available.

This explains that We couldn’t account for the correlation between prices and the
wind speed/wave height used in this study at the wind farm level. meteorological
scenarios were computed for a small area around the Teesside offshore wind farm.

– The price scenarios which we used were generated out of the OPEN Entrance
dataset ((Aue20)) which were created in 2021, with assumptions based on the
situation in 2019. Since then, the prospective assumptions on the energy system
future changes have drastically changed in particular following the Ukraine war
and the gas crisis in europe, which led to new European objectives in terms of
energy independance (in particular the REPpowerEU program - see (rep)). New
datasets are currently being worked on in many research projects and should be
published in the coming months.

– The used price scenarios show very high price values in the latest years, due
to the fact that the electricity mix in the dataset is characterised by a lack
of peak capacity, as it was computed by an energy system model which is
mostly deterministic and computed the demand/supply equilibrium with a yearly
granularity. Although it includes a modelling of the peak demand and the
variability of wind and PV power, this modelling is not accurate enough to
allow creating a perfectly adequate electricity mix.

8.3 Perspectives
– Regarding the implemented software, the following tasks could be envisaged:

∗ Re-write a more ’industrial’ version (the one we have is a research code,
usable only for the benefit of the research conducted within this project)

∗ Optimize the solving process, in particular for the short-term problem.
For MINLP problems, the computation time can be drastically reduced by
adding additional constraints (called cuts), which do not change the result
of the optimisation, but may drastically (or not) reduce the computation
time as they will help the branch and bound solver to find the optimal
solution much faster. This would require consequent research time and is
not feasible in the time frame and resource allowance of the HIPERWIND
project but could be envisaged in the future.

∗ Parallelize the resolution of the short term problems. We have used a
parallel approach for solving the short-term problems and the simulation
but it was restricted to parallel runs of models on different cases. The code
could benefit from internal parallelisation. Nevertheless, it requires some
expertise on parallelization techniques, which are out of the scope of the
HIPERWIND project.

– Regarding the modelling, it could be improved first by including the modelling
options which are already implemented but were not used due to lack of data,
and second by adding some modelling features such as accounting for delays in
the vessel arrival.
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– Regarding the price scenarios:
∗ Recomputing new scenarios based on new energy system prospective as-

sumptions as well as enhanced modelling of the energy system model, which
now better accounts for electricity flexibility needs and thus creates electric-
ity mixes which are more able to cope with high shares of variable renewable
energy assets;

∗ By using electricity system models with a lower granularity for the region
around the wind farm, it may be possible to generate market prices which
are correlated with the meteorological scenarios used to account for the
wind speed. The computations in particular of the market factor would
then be much more accurate and representative. This nevertheless would
require a 2 steps approach in order not to lose the European correlations.
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