PO.051

DEEP LEARNING-BASED MODELING OF WAKE
INDUCED EFFECTS IN WIND FARMS

Suguang Dou, Nikolay Dimitrov
Department of Wind and Energy System, Technical University of Denmark

HIPERWIND

Neural network models Turbine

power
output

Turbine
" Features
positions

Turbine

1 1 I |
| | | |
' ! | Turbine | '
Ambient _ i response | | o : TLl”b';e
wind \ function | | : e
oD L ! output

*Geometric features are needed to parameterize wake effects in wind
farm. Existing studies are based on manually extracted features [1-3].

“*Dimitrov(2019): 3-parameter approach (Rp, 8, N,-,,, )
**Yan et al.(2019): 2-parameter approach (BR & BD)

«*Dimitrov et al.(2021): turbine-wise features (R, ;, 6;)

This study aims to automatically encode turbine positions in wake
sources into a few latent variables that can be used for building
surrogate models of wake effects.
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Two AENN approaches are studied by Dou and Dimitrov (2022) [4]. One
of the AENN approaches is shown below. Both input & output are
geometric features. The LVs learn the best information to reconstruct
geometric features. But they are not directly related to wake effects.

Step 1: train AENN
- w Decoder -
Layout-derived Layout-derived

features features

Farm geometry

Step 2: apply trained encoder

----------

Farm geometry Layout-derived

features

The AENN is trained on 100 wind farm layouts including 50 regular wind
farm layouts and 50 random wind farm layouts. The resulting LVs
represent geometric features learned from these 100 wind farm layouts.
However, the resulting surrogate model does not provide desirable
performance. This may be due to the fact that the features learned by
the LVs are not well correlated to the wake effects.
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In contrast to AENN, the proposed DLNN approach maps geometric
features to wake effects on a mock turbine. The LVs learn geometric
features based on their resulting wake effects. Different geometric
features with similar wake effects are likely to have similar LVs.
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The DLNN is trained on 20 wind farm layouts include 10 regular wind
farm layouts and 10 random wind farm layouts. The resulting LVs
represent geometric features learned from these 20 wind farm layouts
and their resulting wake effects on a mock turbine. The surrogate model
based on the trained encoder of DLNN achieves satisfactory performance

in terms of both correlation and errors.
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J A DLNN approach is presented to include wake effects in features learned by the LVs

J LVs learned with DLNN approach outperforms LVs learned with AENN in surrogate models for estimate wake effects

d An alternative wake parameterization approach is presented by our partner IFP Energies Nouvelles (IFPEN) on poster PO103

1. Dimitrov, N. (2019). Surrogate models for parameterized representation of 3. Dimitrov, N., & Natarajan, A. (2021). Wind farm set point optimization with
wake-induced loads in wind farms. Wind Energy, 22(10), 1371-1389. surrogate models for load and power output targets. Journal of Physics:
2. Yan, C.,, Pan, Y., & Archer, C. L. (2019). A general method to estimate wind farm Conference Series 2018: 012013.
power using artificial neural networks. Wind Energy, 22(11), 1421-1432. 4. Dmitrov, N. and Dou, S. (2022). Modelling of turbine power and local wind
conditions in wind farm using an autoencoder neural network. Accepted for

TORQUE 2022 and Journal of Physics: Conference Series.

HIPERWIND project has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 101006689

Watch this ,l, Download
presentation Lt the poster

windeurope.org/tech2022
#WindTech22

w d ® TECHNOLOGY
in WORKSHOP

EUROPE 2022 srvsceis

BRUSSELS




