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ABSTRACT
This paper presents an extreme value analysis on data of sig-

nificant wave height based on time-series simulation. A method
to simulate time series with given marginal distribution and pre-
serving the autocorrelation structure in the data is applied to
significant wave height data. Then, extreme value analysis is
performed by simulating from the fitted time-series model that
preserves both the marginal probability distribution and the au-
tocorrelation. In this way, the effect of serial correlation on the
extreme values can be taken into account, without subsampling
and de-clustering of the data. The effect of serial correlation on
estimating extreme wave conditions have previously been high-
lighted, and failure to account for this effect will typically lead
to an overestimation of extreme conditions. This is demonstrated
by this study, that compares extreme value estimates from the
simulated times-series model with estimates obtained directly
from the marginal distribution assuming that 3-hourly signifi-
cant wave heights are independent and identically distributed.
A dataset of significant wave height provided as part of a sec-
ond benchmark exercise on environmental extremes that was pre-
sented at OMAE 2021, has been analysed.

Keywords: Ocean environment; Extreme value analysis;
Time series modelling; Significant wave height; Environmental
loads; probabilistic wave models

1 INTRODUCTION
Probabilistic descriptions of extreme wave conditions are

important for safe and reliable design and operation of marine
structures. The most extreme environmental conditions the struc-
ture is expected to experience during its lifetime must be ac-

counted for during design, and extreme value analysis of rel-
evant metocean variables is crucial. One of the most relevant
wave parameters for ocean engineering applications is the signif-
icant wave height, HS, and several applications of extreme value
analysis of this variable has been reported in the literature [1–8].
Indeed, a second benchmark exercise was announced at OMAE
2021 calling for estimates of extreme environmental conditions
based on specific datasets of significant wave height that were
made available [9]. This is a follow-up of a previous benchmark-
ing exercise that, inter alia, highlighted the effect of serial cor-
relation on extreme value estimates [10], as elaborated further
in [11].

This paper presents extreme value estimates of significant
wave height from the datasets presented in the second bench-
mark exercise, based on a time-series model that preserves the
marginal distribution and the autocorrelation of the data. This is
a way of accounting for serial correlation in the statistical anal-
ysis that would reduce the bias this has on extreme value esti-
mates, but without the need for subsampling and de-clustering of
the data. Such modelling could also provide a means for more
realistic simulation of time-series of significant wave height that
could be relevant for other applications than extreme value anal-
ysis, even though the focus of this paper is estimation of extreme
conditions.

The extreme value analysis presented in this paper is based
on simulating time-series from the fitted statistical model to
obtain several samples of the extreme T -year significant wave
height. This gives an empirical distribution of the maximum HS
in a T -year period, and the corresponding T -year return value
can be estimated as the 1/e-quantile of this distribution (see
e.g. [9,11]). However, the approach presented in this paper gives
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an estimate of the full T -year maximum distribution and other
measures such as the mean and standard deviation of the T -year
maximum can also be estimated. Moreover, a parametric distri-
bution may be fitted to the empirical extreme value distribution.
In this paper, the focus will be on the 25-year extreme values.

In the following, a brief description of the significant wave
height data used in this study will be given before the statistical
model will be presented. Finally, results from applying such a
model to the significant wave height data will be presented and
discussed.

2 SIGNIFICANT WAVE HEIGHT DATA
Three different datasets of significant wave height, referred

to as Site 1, Site 2 and Site 3, respectively, have been made avail-
able as part of the second benchmark exercise [9]. In all datasets,
values of significant wave height at 3-hourly intervals are pro-
vided for a period of 25 years. Trace plots of the data for the
three sites are shown in Figure 1, where the index on the x-axis
denotes the 3-hourly intervals, and the empirical densities are
shown in Figure 2. Some summary statistics of the data are pro-
vided in Table 1. The 25-year return value estimates presented in
this table are from a standard block-maxima approach on annual
maximum data assuming a generalized extreme value distribu-
tion, see e.g. [12], and are provided for reference. It is noted that
these estimates are somewhat different from the baseline esti-
mates provided in [9], which were based on the block maximum
approach on annual maxima but assuming a Gumbel distribution.
These differences only illustrates the large uncertainties associ-
ated with extreme value analysis. Note also that although the
most severe conditions in the baseline results presented in [9]
are associated with Site 1, the summary statistics in Table 1 sug-
gest that the most severe conditions occur at Site 3. Hence, it is
possible that the naming of the datasets have been mixed up and
that what is referred to as Site 1 in [9] is indeed dataset Site 3
in this paper. However, as long as one do not intend to compare
results, the naming of the datasets has no relevance. Note also
that all datasets have positive skewness, indicating right-skewed
distributions, and that the kurtoses are greater than 3, indicating
heavier tails than the normal distribution.

3 STATISTICAL MODEL FOR TIME-SERIES SIMULA-
TION
Typically, in extreme value analysis, one may fit statisti-

cal models to the peaks in the data only, e.g. model peaks
over a threshold or block maxima, which may be assumed to
be independent and identically distributed (iid) after sensible de-
clustering. In this way, serial correlations are removed in the
data that are analysed, and the effect of serial correlation will be
negligible. However, one drawback of this approach is that it
is wasteful, and the amount of data available for the analysis is

FIGURE 1. Trace plots of the significant wave height data

FIGURE 2. Empirical densities of the significant wave height data

significantly reduced. Typically, with an annual maximum ap-
proach, the amount of data is reduced to 25 from 25 years of
observations. Even though the bias due to serial correlation is
avoided, the uncertainty due to sampling variability will be rather
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TABLE 1. Summary statistics for the significant wave height data (in
meters).

Site 1 Site 2 Site 3
minimum 0.72 1.01 0.41
median 1.64 2.16 1.85
mean 1.95 2.41 2.20
90%tile 3.19 3.58 3.91
99%tile 5.85 5.60 6.87
maximum 11.44 10.79 14.53
standard deviation 1.01 0.90 1.32
skewness 2.38 1.78 1.81
kurtosis 11.42 7.79 8.35
25-year return value 11.36 11.33 14.34
50-year return value 11.78 12.93 15.16

large.
In this paper, a different approach is suggested that explicitly

takes the serial correlation into account in the statistical mod-
elling. That is, rather than merely fitting a distribution func-
tion to the data and making inference based on that, a statistical
model that both preserves the marginal distribution and the au-
tocorrelation in the data will be established, and estimates of ex-
treme values will be based on that model. There are different ap-
proaches that could be used in order to establish such time-series
models [13]. For example, [14, 15] propose diffusion-type mod-
els with given marginal distributions and autocorrelation func-
tions, Weibull and gamma autoregressive processes are presented
in [16], and Gaussian and Non-Gaussian autoregressive models
are discussed in [17]. However, in this paper, an approach based
on transforming a Gaussian parent autoregressive time series to
have the desired marginal distribution and temporal correlation
structure will be taken, as suggested in [18]; see also [19, 20].

The time-series of interest, X(t), is specified by a marginal
distribution, FX (x) and an autocorrelation structure, ρX (τ) and it
is assumed that this has a parent Gaussian time-series, Z(t) with
a standard Gaussian marginal ΦZ(z) and another autocorrelation
structure ρZ(τ). Hence, modelling and simulation of the time-
series X(t) correspond to modelling and simulating the parent
Gaussian time-series and finding the transformations that trans-
form the parent time-series to the desired one, i.e. determine
functions g and T such that

X(t) = g(Z(t))

ρZ(τ) = T (ρX (τ))
(1)

Simulating from a Gaussian time-series is not difficult, and the
normal distribution have several well-know properties. For ex-
ample, if Z(t) is a standard normal time-series, then any linear
combination of Z(t)’s will be jointly normally distributed and the

marginal will be standard normal. Hence, if one can find a parent
Gaussian time-series that can be transformed into the time-series
X(t), simulation of X(t) is straightforward.

As pointed out in [18], g is easily identified as g(Z) =
F−1

X (ΦZ(Z)), which will give the desired marginal distribution.
However, this transformation of the marginal distribution does
not preserve the autocorrelation structure, which depends on
the marginal distribution FX (x). Hence, one needs to establish
the autocorrelation structure of the parent Gaussian time-series,
ρZ(τ) that yields the required autocorrelation structure for the
target time-series X(t) after transformation.

In the bivariate case, it can be shown that for an arbitrary
transformation, the correlation between the transformed vari-
ables will be smaller than the correlation between the initial stan-
dard normal variables (see e.g. [18]), i.e.

ρX =Cor [g(Z(t1)),g(Z(t2))]≤Cor [Z(t1),Z(t2)] = ρZ , (2)

meaning that the ρZ values needs to be inflated to obtain the tar-
get ρX . Moreover, the correlation coefficient of two lagged vari-
ables X(t1) and X(t2) can be expressed as

ρX (τ) =
E (X(t1)X(t2))−µ2

X

σ2
X

, (3)

where E is the expectation operator, τ = t2 − t1 and µx and σX
are the mean and the standard deviation of X . Now, assuming
that X(t) = g(Z(t)) = F−1

X (ΦZ(Z(t))), one has that

E (X(t1)X(t2)) = E
(
F−1

X (ΦZ(Z(t1)))F−1
X (ΦZ(Z(t2)))

)
=

∫ ∞

−∞

∫ ∞

−∞
F−1

X (ΦZ(u))F−1
X (ΦZ(v))ϕu,v(u,v;ρZ(t2 − t1))dudv,

(4)

where ϕ(u,v;ρ) denotes the density function of the bivariate
standard normal distribution with correlation ρ . This gives a re-
lationship between ρZ(τ) and ρX (τ) and can be used to calculate
ρX (τ) from known ρZ(τ), i.e.

ρX (τ) =∫ ∞
−∞

∫ ∞
−∞ F−1

X (ΦZ(u))F−1
X (ΦZ(v))ϕu,v(u,v;ρZ(τ))dudv−µ2

X

σ2
X

.

(5)

Note however, that in order to model the time series with known
ρX (t), one needs the inverse transformation to find ρZ(t) from
ρX (t). Note also that even though the double integral above does
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not have an analytical solution in general, its numerical estima-
tion is straightforward.

Hence, the modelling problem is solved by defining a corre-
lation transformation function to estimate the autocorrelation of
the parent Gaussian time-series from a given target autocorrela-
tion structure that may be estimated from the data. The following
parametric form of such an autocorrelation transformation func-
tion is proposed in [18]:

ρZ = T (ρX ) =
(1+αρX )

(1−β )−1
(1+α)(1−β )−1

. (6)

This can be used to estimate a parametric autocorrelation func-
tion of the parent Gaussian time-series, ρZ(τ) based on a
parametric autocorrelation function for the target time-series,
ρX (τ). The parameters can be fitted by calculating ρX for ρZ =
(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95) according to eq. (5)
and fit the function to the set of (ρX ,ρZ)-points (see [18] for de-
tails).

With this approach, modelling a time series with desired
marginal and correlation structure involves fitting the marginal
distribution and estimating the empirical autocorrelation struc-
ture from the time-series, fitting the parametric autocorrelation
transformation function to obtain the autocorrelation structure of
the parent Gaussian time-series, fit an autoregressive model to
generate the Gaussian parent time-series and transforming the
Gaussian time-series using the transformation X(t) = g(Z(t)) =
F−1

X (Φ(Z(t)). In the following, such a model will be fitted to
the three datasets of significant wave height by estimating the
marginal distributions and the autocorrelation functions.

3.1 Marginal distributions
The first step in the modelling approach presented above is

to fit a marginal distribution to the data. For significant wave
height data, the 3-parameter Weibull distribution is often as-
sumed to give a good fit [21], and this distribution will be as-
sumed also in this study. Hence, the 3-parameter Weibull distri-
bution, with density function given in Eq. (7), will be fitted to the
three datasets. Two fitting techniques will be tried, i.e. maximum
likelihood (ML) and fitting based on the second order Anderson-
Darling statistic (AD), see e.g. [22]. The resulting fits are shown
in Figure 3, and estimated model parameters are shown in Ta-
ble 2. It is observed that the marginal fits are not too good, but
AD-fits are considerably better for the upper tail compared to the
ML-fits, although completely missing the lower values, and these
marginal distributions will be assumed in the further analysis.

fHs(hs) =
β
α

(
hs − γ

α

)β−1

exp

[
−
(

hs − γ
α

)β
]
. (7)

It is noted that improved fits could possibly be obtained by
using other fitting methods, e.g. the method of moments, or by
assuming other parametric distribution functions, for example a
hybrid model with a Weibull distribution for the body and a gen-
eralized Pareto distribution for the tails. However, for the pur-
pose of this study, the 3-parameter Weibull distribution fitted by
minimizing the second order Anderson-Darling statistic will be
assumed, and this is found to capture the upper tail quite well.

TABLE 2. Fitted model parameters for the marginal distributions.
shape (β ) Scale (α) location (γ)

Site 1 ML fit 1.386 1.363 0.720
AD fit 0.873 0.817 1.085

Site 2 ML fit 1.688 1.576 1.010
AD fit 1.049 0.948 1.488

Site 3 ML fit 1.472 1.996 0.410
AD fit 1.058 1.419 0.828

The parametric function assumed for the autocorrelation
transformation function in eq. (6) is found to fit the autocorrela-
tion transformation points very well, as demonstrated in Figure 4
for the three marginal distributions fitted to the different datasets
in this study.

3.2 Autocorrelation functions

In order to specify the autocorrelation of the parent Gaus-
sian autoregressive model, one must estimate the autocorrelation
function for the target time-series, and this is done by fitting
a parametric function to the empirical autocorrelation function
(ACF). There are many parametric autocorrelation functions to
choose from, see e.g. [18] and in this study, six different para-
metric functions is tried out, i.e. the Weibull, the Burr, the log-
arithmic, the fGn, the generalised fGn and the Pareto ACF. The
empirical autocorrelation functions are shown together with the
fitted parametric candidate models in Figure 5. The functions are
fitted by least squares, and the residual sum of squares (RSS) are
indicated for each candidate model in the plots. It is observed
that the 3-parameter Burr-type autocorrelation function fits best
to the data for all three sites, and this would typically be pre-
ferred. However, it turns out that this ACF yields not positive
definite covariance matrices (see also [23]), and therefore further
analyses will be based on the 2-parameter alternatives, Weibull,
logarithmic and Pareto-type ACFs. The parametric forms of
these autocorrelation functions are given in Eq. (8).
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FIGURE 3. Fitted marginal distributions

FIGURE 4. Fitted autocorrelation transformation function according
to eq. (6)

ρBurr(τ;ζ ,η ,θ) =
(

1+θ
(

τ
ζ

)η)− 1
ηθ

ρWeibull(τ;ζ ,η) = e
(
−
(

τ
ζ

)η)

ρLog(τ;ζ ,η) =

(
1+ ln

(
1+η

τ
ζ

))− 1
η

ρPareto(τ;ζ ,η) =

(
1+η

τ
ζ

)− 1
η

(8)

Having established the statistical model, it is possible to sim-

FIGURE 5. Autocorrelation functions

ulate from it to generate simulated data with the desired marginal
distribution and autocorrelation function. Examples of such sim-
ulated data are shown in Figure 6. The top plot shows 8 years of
observed data from Site 1 and the bottom plot shows first 4 years
of data simulated from the fitted marginal distribution assuming
iid and then four years of data simulated from the time-series
model assuming the same marginal distribution and a Weibull-
type autocorrelation function. It is observed that the data sim-
ulated from the time-series model better resemble the observed
data than the data simulated assuming iid.
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FIGURE 6. Comparing observed (top) and simulated (bottom) data;
simulated data are from the marginal distribution assuming iid and from
the time-series model with desired marginal and autocorrelation func-
tion, respectively

4 EXTREME VALUE ANALYSIS RESULTS
Having established the statistical models, it is possible to

simulate synthetic time series of significant wave height for the
three sites in order to do extreme value analysis. In this study,
M = 500 25-year time series will be simulated from the statis-
tical models. For each simulated time-series the largest value is
taken to represent a sample of the 25-year maximum significant
wave height. This yields M = 500 samples from the distribution
and can be used to make inference of the 25-year maximum sig-
nificant wave height. One may estimate the entire distribution as
well as for example the mean 25-year maximum significant wave
height and the 25-year return value of significant wave height.

The simulated distributions of 25-year maximum significant
wave height are shown in Figure 7. Results are shown for time-
series models assuming the parametric Weibull, Logarithmic and
Pareto autocorrelation functions, as well as for a model using
the non-parametric empirical autocorrelation function. In addi-
tion, results are shown for data simulated assuming iid from the
marginal distributions. The plots also include the corresponding
estimates of the 25-year return values for significant wave height,
as well as the quantile of the marginal distribution corresponding
to the 25-year return value if serial correlation is ignored.

Some general observations can be made from these results.
Firstly, it is observed that the assumed autocorrelation function
notably influences the return value estimates. For all of the

sites, assuming the same marginal distribution, return value es-
timates vary according to what parametric autocorrelation func-
tion was fitted to the data. For all the sites, the ordering of re-
turn value estimates according to which autocorrelation function
is assumed remains the same. Simply using the empirical non-
parametric autocorrelation function to fit the time series model
yields the lowest return value estimate. Then, increasing esti-
mates are obtained by assuming, the logarithmic, the Pareto-type
and the Weibull-type parametric acfs, respectively. It is not ob-
vious whether this is a particular feature of these datasets or if
this is a general feature of the acfs, but it is interesting to observe
that the ordering of return value estimates correspond to the or-
dering of model fit of the different acf, as seen from Figure 5.
Hence, it seems to be the case that a better fit of the parametric
acf to the empirical one yields better agreement between results
assuming the empirical acf which in this case means lower return
value estimates. Furthermore, it is observed that all estimates ob-
tained from a time-series model are significantly lower than the
return value estimates obtained from assuming iid and hence ig-
noring serial correlation. Hence, even though the best time series
model cannot be determined, it seems clear that accounting for
serial dependence in some way reduces or even eliminates the
positive bias in return value estimates obtained when neglecting
serial correlation.

For the three sites, the largest differences in the return value
estimates are between estimates based on time series models with
the empirical autocorrelation function and the estimates ignoring
serial correlation. For site 1, the difference is 1.42 m, for site 2 it
is 1.31 m and for site 3 it is 1.93 m, for the 25-year return value.
This may be practically significant, suggesting that serial corre-
lations should be taken into account in extreme value analysis for
ocean engineering applications.

Results may also be compared to the reference values in Ta-
ble 1 obtained from rather standard GEV-fitting to annual max-
ima, and it is observed that there are no recognizable patterns.
For Site 1, the return value estimates obtained from fitting GEV
to annual maxima are considerably lower than all estimates ob-
tained using the time series models, and also obviously much
lower than the return values obtained when ignoring serial cor-
relation. For Site 2, the picture is completely opposite, and
annual-maxima based return value estimates are considerably
higher than estimates from either the time series models or from
the models ignoring serial dependence. Finally, for Site 3, the
annual-maxima based return value estimates fall between the es-
timates obtained from the time series models and the estimates
obtained when ignoring time-series models. If nothing else, these
observations serve to remind about the large uncertainties asso-
ciated with extreme value analysis [22].

It is also possible to fit parametric distributions to the sim-
ulated T -year extreme data, and the Gumbel distribution can be
assumed as a reasonable extreme value model. Hence, the re-
sulted parametric distributions fitted to the 25-year maximum
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FIGURE 7. Distributions of 25-year maximum significant wave height from the time-series models

data for Site 1 is shown in Figure 8. The empirical distributions
are shown with dashed lines and the solid lines are the fitted gum-
bel distributions. The fits are good and slightly different return
value estimates can also be obtained from these parametric dis-
tributions, as indicated in the figure.

FIGURE 8. Fitting Gumbel distributions for the 25-year maximum
data

5 DISCUSSION
The extreme value analysis presented above is a way of ac-

counting for serial correlation by simulating from a time series
model that preserves the marginal distribution and the autocor-
relation in the observed data. It is demonstrated to give lower
extreme value estimates than what one would get if serial corre-
lation is ignored and hence to reduce the positive bias known to
occur [11]. It also has an advantage compared to standard ex-
treme value analysis techniques in that there is no need for sub-
sampling and de-clustering, making it less wasteful. However,
results will be sensitive to the actual time-series model fitted to
the data, in terms of both the marginal and the autocorrelation
function. Indeed, different autocorrelation functions were used
in this study and were found to give different results. Hence,
efforts should be made to improve the time series models.

In this study, rather crude models were fitted to the data,
and significant improvements could be made by for example pre-
processing of the data. The autocorrelation functions were fit-
ted directly to the observed data, and improved models could be
obtained by e.g. removing any deterministic components from
the time series before fitting a model to the residuals. Season-
ality is one example of such deterministic components; long-
term trends is another. Different ways of modelling and remov-
ing seasonal components are suggested in e.g. [24, 25]. Another
approach could be to bin the data into different seasons and fit
season-specific models to each bin, similarly to the approach
taken by [7,26]. Such pre-processing or binning of the data have
not been explored in this study, and it is suggested as an impor-
tant direction for future research.

When the interest is in the extremes, one could argue that
it is not necessarily the standard autocorrelation structure in the
data that is most relevant, but rather the level-dependent serial
correlation expressed by the conditional probability χ(u,τ) =
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Pr (X(t + τ)> u|X(t)> u), which may be illustrated by ex-
tremograms [27, 28]. The correlation structure for high levels,
u, should also be preserved in the time series to ensure the effect
of serial correlation on extremes are properly accounted for. It
is possible to compare the sample extremogram of the data and
the simulated time-series, as shown in Figure 9 with levels corre-
sponding to quantiles q= 0.99, 0.999 and 0.9995. As can be seen
from these plots, the simulated time series preserves the extremal
correlation reasonably well, and much better than the simulated
IID samples (where also the extremes will be independent). The
TS-extremograms shown in Figure 9 correspond to the time se-
ries simulated with the non-parametric empirical autocorrelation
structure.

FIGURE 9. Comparing extremograms for the empirical data and sim-
ulated time series

6 SUMMARY AND CONCLUSIONS
This paper has presented an approach to fitting statistical

models to metoean data that preserves the marginal distribution
and the autocorrelation in the observed time series. Such mod-
els may be established from fitted marginal distributions and ei-

ther the empirical autocorrelation function or a parametric func-
tion fitted to this. These models can then be used for extreme
value analysis by simulating from the fitted models in order to
obtain distributions of T -year maximum data. Return values can
then be estimated from these distributions, which then takes se-
rial correlation into account. It is also demonstrated that this
reduces or eliminates the positive bias that is known to occur in
extreme value analysis when ignoring the effect of serial correla-
tion. Hence, the presented approach is presented as an alternative
to standard extreme value analysis approaches based on peak val-
ues, and one advantage with the proposed method is that it is not
wasteful. There is no need for de-clustering or peak picking of
the data. Moreover, such statistical models may have other uses
than extreme value analysis.

Extreme value estimates based on the proposed approach are
found to be reasonable. In particular, estimates are lower than
estimates obtained when ignoring serial correlation. However,
results also demonstrate that return value estimates will be sen-
sitive to the assumed time series model. In particular, different
assumptions of the autocorrelation function will give different
results. Hence, particular focus should be put on obtaining the
best possible model, and objective model selection criteria will
be important. Furthermore, careful pre-processing of the data
to remove any deterministic components should be carried out,
although this has been left for future work in this study.
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